Near-field properties of diffraction through a circular subwavelength-size aperture
Analytical nonparaxial vectorial electric field expressions for both Gaussian beams and plane waves diffracted through a circular aperture are derived by using the vector plane angular spectrum method for the first time, which is suitable for the subwavelength aperture and the near-field region. The...
Saved in:
Published in | Chinese physics B Vol. 21; no. 6; pp. 188 - 199 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.06.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/21/6/064202 |
Cover
Summary: | Analytical nonparaxial vectorial electric field expressions for both Gaussian beams and plane waves diffracted through a circular aperture are derived by using the vector plane angular spectrum method for the first time, which is suitable for the subwavelength aperture and the near-field region. The transverse properties of intensity distributions and their evolutions with the propagating distance, and the power transmission functions for diffracted fields containing the whole field, the evanescent field and the propagating field are investigated in detail, which is helpful for understanding the relationship between evanescent and propagating components in the near-field region and can be applied to apertured near-field scanning optical microscopy. |
---|---|
Bibliography: | analytical expressions, diffraction, circular subwavelength aperture, near-field properties Wang Zheng-Ling, Zhou Ming, Gao Chuan-Yu, and Zhang Wei(a) School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China b) Department of Physics, Jiangsu University, Zhenjiang 212013, China 11-5639/O4 Analytical nonparaxial vectorial electric field expressions for both Gaussian beams and plane waves diffracted through a circular aperture are derived by using the vector plane angular spectrum method for the first time, which is suitable for the subwavelength aperture and the near-field region. The transverse properties of intensity distributions and their evolutions with the propagating distance, and the power transmission functions for diffracted fields containing the whole field, the evanescent field and the propagating field are investigated in detail, which is helpful for understanding the relationship between evanescent and propagating components in the near-field region and can be applied to apertured near-field scanning optical microscopy. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/21/6/064202 |