Simulation study of blue InGaN multiple quantum well light-emitting diodes with different hole injection layers
InGaN-based light-emitting diodes with p-GaN and p-A1GaN hole injection layers are numerically studied using the APSYS simulation software. The simulation results indicate that light-emitting diodes with p-A1GaN hole injection layers show superior optical and electrical performance, such as an incre...
Saved in:
Published in | Chinese physics B Vol. 21; no. 6; pp. 583 - 587 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.06.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/21/6/068506 |
Cover
Loading…
Summary: | InGaN-based light-emitting diodes with p-GaN and p-A1GaN hole injection layers are numerically studied using the APSYS simulation software. The simulation results indicate that light-emitting diodes with p-A1GaN hole injection layers show superior optical and electrical performance, such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-A1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency. |
---|---|
Bibliography: | GaN-based light-emitting diodes, hole injection layer, injection efficiency InGaN-based light-emitting diodes with p-GaN and p-A1GaN hole injection layers are numerically studied using the APSYS simulation software. The simulation results indicate that light-emitting diodes with p-A1GaN hole injection layers show superior optical and electrical performance, such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-A1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency. Wu Le-Juan, Li Shu-Ti, Liu Chao, Wang Hai-Long, Lu Tai-Ping, Zhang Kang, Xiao Guo-Wei, Zhou Yu-Gang,Zheng Shu-Wen, Yin Yi-An, and Yang Xiao-Dong(a) Institute of Opto-electronic l$faterials and Technology, South China Normal University, Guangzhou 510631, China b) APT Electronics Ltd, Nansha District, Ouangzhou 511458, China 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/21/6/068506 |