Learning texture discrimination rules in a multiresolution system
We describe a texture analysis system in which informative discrimination rules are learned from a multiresolution representation of time textured input. The system incorporates unsupervised and supervised learning via statistical machine learning and rule-based neural networks, respectively. The te...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 16; no. 9; pp. 894 - 901 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.09.1994
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We describe a texture analysis system in which informative discrimination rules are learned from a multiresolution representation of time textured input. The system incorporates unsupervised and supervised learning via statistical machine learning and rule-based neural networks, respectively. The textured input is represented in the frequency-orientation space via a log-Gabor pyramidal decomposition. In the unsupervised learning stage a statistical clustering scheme is used for the quantization of the feature-vector attributes. A supervised stage follows in which labeling of the textured map is achieved using a rule-based network. Simulation results for the texture classification task are given. An application of the system to real-world problems is demonstrated.< > |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0162-8828 1939-3539 |
DOI: | 10.1109/34.310685 |