Fabrication of Sandwiched NiCo-Layered Double Hydroxides/Carbon Nanoballs for Sustainable Energy Storage

This study presents a promising method for creating high-performance supercapacitor electrodes. The approach involves crafting a unique composite material-nickel-cobalt-layered double hydroxides (NiCo-LDH) grown on carbon nanoballs (CNBs). This is achieved by first creating a special carbon material...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 16; no. 14; p. 2005
Main Authors Periyasamy, Thirukumaran, Asrafali, Shakila Parveen, Kim, Seong-Cheol, Lee, Jaewoong
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 12.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study presents a promising method for creating high-performance supercapacitor electrodes. The approach involves crafting a unique composite material-nickel-cobalt-layered double hydroxides (NiCo-LDH) grown on carbon nanoballs (CNBs). This is achieved by first creating a special carbon material rich in oxygen and nitrogen from a polybenzoxazine source. At first, eugenol, ethylene diamine and paraformaldehyde undergo Mannich condensation to form the benzoxazine monomer, which undergoes self-polymerization in the presence of heat to produce polybenzoxazine. This was then carbonized and activated to produce CNBs containing heteroatoms. Then, through a hydrothermal technique, NiCo-LDH nanocages are directly deposited onto the CNBs, eliminating the need for complicated templates. The amount of CNBs used plays a crucial role in performance. By optimizing the CNB content to 50%, a remarkable specific capacitance of 1220 F g was achieved, along with excellent rate capability and impressive cycling stability, retaining 86% of its capacitance after 5000 cycles. Furthermore, this NiCo-LDH/CNB composite, when combined with active carbon in a supercapacitor configuration, delivered outstanding overall performance. The exceptional properties of this composite, combined with its simple and scalable synthesis process, position it as a strong contender for next-generation sustainable energy storage devices. The ease of fabrication also opens doors for its practical application in advancing energy storage technologies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2073-4360
2073-4360
DOI:10.3390/polym16142005