Adaptive fault-tolerant trajectory tracking control of twin-propeller non-rudder unmanned surface vehicles
This paper studies the fault-tolerant trajectory tracking control problem of twin-propeller non-rudder unmanned surface vehicles (TPNR USVs) subject to propeller faults. Firstly, a propeller model of TPNR USVs is constructed by decomposing propeller thrusts on the body-fixed reference frame. A prope...
Saved in:
Published in | Ocean engineering Vol. 285; p. 115294 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0029-8018 1873-5258 |
DOI | 10.1016/j.oceaneng.2023.115294 |
Cover
Abstract | This paper studies the fault-tolerant trajectory tracking control problem of twin-propeller non-rudder unmanned surface vehicles (TPNR USVs) subject to propeller faults. Firstly, a propeller model of TPNR USVs is constructed by decomposing propeller thrusts on the body-fixed reference frame. A propeller fault model is also established by taking into account floating and loss-of-effectiveness faults. Secondly, to ensure tracking errors stay in reasonable ranges, a novel guaranteed transient performance method is proposed. Meanwhile, corresponding error transformation functions are constructed. Thirdly, by utilizing the excellent nonlinearity approximation performance of neural networks (NNs), an adaptive fault-tolerant trajectory tracking control scheme, which can guarantee TPNR USVs track the desired trajectory quickly and accurately even in the event of propeller faults, is proposed. Finally, the fault-tolerant trajectory tracking performance analysis demonstrates the efficiency of the proposed control scheme.
•A coherent mechanism among propulsion forces, steering moment, and propeller-generated thrusts of TPNR USVs is developed.•The fault-tolerant trajectory tracking control problem of TPNR USVs is studied for the first time. Corresponding, a novel adaptive fault-tolerant control scheme is designed.•The design of propeller thrusts is proposed, which is more suitable for practical applications than giving only the design of the surge force and yaw moment. |
---|---|
AbstractList | This paper studies the fault-tolerant trajectory tracking control problem of twin-propeller non-rudder unmanned surface vehicles (TPNR USVs) subject to propeller faults. Firstly, a propeller model of TPNR USVs is constructed by decomposing propeller thrusts on the body-fixed reference frame. A propeller fault model is also established by taking into account floating and loss-of-effectiveness faults. Secondly, to ensure tracking errors stay in reasonable ranges, a novel guaranteed transient performance method is proposed. Meanwhile, corresponding error transformation functions are constructed. Thirdly, by utilizing the excellent nonlinearity approximation performance of neural networks (NNs), an adaptive fault-tolerant trajectory tracking control scheme, which can guarantee TPNR USVs track the desired trajectory quickly and accurately even in the event of propeller faults, is proposed. Finally, the fault-tolerant trajectory tracking performance analysis demonstrates the efficiency of the proposed control scheme.
•A coherent mechanism among propulsion forces, steering moment, and propeller-generated thrusts of TPNR USVs is developed.•The fault-tolerant trajectory tracking control problem of TPNR USVs is studied for the first time. Corresponding, a novel adaptive fault-tolerant control scheme is designed.•The design of propeller thrusts is proposed, which is more suitable for practical applications than giving only the design of the surge force and yaw moment. |
ArticleNumber | 115294 |
Author | Liu, Zhao-Qing Wang, Yu-Long Han, Qing-Long |
Author_xml | – sequence: 1 givenname: Zhao-Qing orcidid: 0000-0001-5954-3155 surname: Liu fullname: Liu, Zhao-Qing email: patrickliu@shu.edu.cn organization: Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China – sequence: 2 givenname: Yu-Long orcidid: 0000-0002-6508-0051 surname: Wang fullname: Wang, Yu-Long email: yulongwang@shu.edu.cn organization: Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China – sequence: 3 givenname: Qing-Long orcidid: 0000-0002-7207-0716 surname: Han fullname: Han, Qing-Long email: qhan@swin.edu.au organization: School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia |
BookMark | eNqFkMtOwzAQRS0EEm3hF1B-IMGP5iWxoKp4SZXYwNoy43FxSO3IcYr69yQqbNh0NVcjnauZMyfnzjsk5IbRjFFW3DaZB1QO3TbjlIuMsZzXyzMyY1Up0pzn1TmZUcrrtKKsuiTzvm8opUVBxYw0K626aPeYGDW0MY2-xaBcTGJQDUL04TBF-LJum4B3Mfg28SaJ39alXfAdtiOQjCelYdB6jIPbKedQJ_0QjAJM9vhpocX-ilwY1fZ4_TsX5P3x4W39nG5en17Wq00KgvGY1gpUXpjClMhEzikIBbpkitelpsXY-KGh5LU2xbjUpeF8iQIoE2h4iQrEgtwdeyH4vg9oJNioop2OV7aVjMrJm2zknzc5eZNHbyNe_MO7YHcqHE6D90cQx-f2FoPswaID1DaMJqX29lTFD0DZkiI |
CitedBy_id | crossref_primary_10_3390_jmse11101874 crossref_primary_10_1016_j_apor_2024_104182 crossref_primary_10_1109_TFUZZ_2024_3386849 crossref_primary_10_1109_TSMC_2023_3345847 crossref_primary_10_1080_20464177_2024_2423418 crossref_primary_10_1109_TSMC_2024_3460370 crossref_primary_10_1016_j_oceaneng_2024_118206 crossref_primary_10_1109_TSMC_2023_3346401 crossref_primary_10_3390_jmse12081278 crossref_primary_10_1109_TITS_2023_3324346 crossref_primary_10_1109_TVT_2024_3450845 |
Cites_doi | 10.1016/j.automatica.2018.01.026 10.1109/TVT.2021.3050044 10.1109/TSMC.2017.2702705 10.1016/j.oceaneng.2021.109587 10.1109/TII.2018.2877046 10.1109/TNN.2003.811712 10.1109/TCST.2013.2281211 10.1109/TCYB.2016.2573837 10.1016/j.automatica.2016.11.024 10.1109/TNNLS.2019.2944690 10.1109/TNNLS.2018.2876685 10.1016/j.automatica.2009.02.021 10.1016/j.oceaneng.2020.108556 10.1016/j.oceaneng.2020.108099 10.1109/TCST.2018.2834518 10.1016/j.automatica.2021.109501 10.1109/TNNLS.2014.2302477 10.1109/TAC.2021.3074899 10.1016/j.oceaneng.2021.109416 10.1109/TFUZZ.2017.2761323 10.1016/j.conengprac.2012.10.005 10.1016/j.automatica.2004.01.021 10.1109/TIV.2017.2657379 10.1109/TII.2020.3004343 10.1109/TMECH.2022.3188834 10.1109/TAC.2000.880994 10.1109/TII.2021.3133927 10.1016/j.automatica.2016.01.064 10.1109/TIE.2015.2504553 10.1109/TII.2019.2930471 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oceaneng.2023.115294 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 1873-5258 |
ExternalDocumentID | 10_1016_j_oceaneng_2023_115294 S0029801823016785 |
GrantInformation_xml | – fundername: National Science Foundation of China grantid: 61873335; 61833011 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Science and Technology Commission of Shanghai Municipality, China grantid: 20ZR1420200; 21SQBS01600; 22JC1401400; 21190780300 funderid: http://dx.doi.org/10.13039/501100003399 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET SSH WUQ |
ID | FETCH-LOGICAL-c312t-9aca56f6f7e13520c3acd71a297d06facbdc729df671ad7f224e3c013ef27eac3 |
IEDL.DBID | AIKHN |
ISSN | 0029-8018 |
IngestDate | Tue Jul 01 02:15:14 EDT 2025 Thu Apr 24 22:59:08 EDT 2025 Fri Feb 23 02:38:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Trajectory tracking Fault-tolerant control Unmanned surface vehicles Guaranteed transient performance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-9aca56f6f7e13520c3acd71a297d06facbdc729df671ad7f224e3c013ef27eac3 |
ORCID | 0000-0001-5954-3155 0000-0002-6508-0051 0000-0002-7207-0716 |
ParticipantIDs | crossref_citationtrail_10_1016_j_oceaneng_2023_115294 crossref_primary_10_1016_j_oceaneng_2023_115294 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2023_115294 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 2023-10-00 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, Ma, Tong (b12) 2018; 26 Park, Kwon, Kim (b18) 2017; 77 Liu, Ge, Han, Wang, Zhang (b14) 2023 Wang, Deng (b24) 2020; 16 Dai, Wang, Wang (b4) 2016; 63 Rosa, Silvestre (b21) 2013; 21 Chen, Liu, Liu, Lin (b1) 2009; 45 Zhao, Chen (b30) 2020; 31 Liu, Wang, Han, Yang (b15) 2022; 27 Paliotta, Lefeber, Pettersen (b17) 2019; 27 Hao, Zhang, Guo, Li (b7) 2021; 51 Zhao, He, Ge (b31) 2014; 22 Li, Zhang, Tong (b13) 2022; 18 Lv, Peng, Wang, Liu, Wang, Li (b16) 2021; 238 Jin (b11) 2016; 68 Park, Yoo (b19) 2021; 127 Song, Park, Zhang, Song (b22) 2021; 68 Swaroop, Hedrick, Yip, Gerdes (b23) 2000; 45 Zhang, Wang, Wei, Wang (b29) 2020; 218 Zhou, Huang, Su (b33) 2021; 236 Chen, Wen, Liu, Wang (b2) 2014; 25 Do, Jiang (b5) 2004; 40 El-Ferik, Hashim, Lewis (b6) 2018; 48 Wang, Han (b25) 2018; 91 Zhao, Song, Chen, Chen (b32) 2022; 67 Huang, Tan, Lee (b9) 2003; 14 Huang, Zhang, Zhang (b10) 2021; 222 Wang, Lv, Er, Chen (b26) 2016; 1 Wang, Su, Pan, Yu, Xie (b27) 2019; 15 Dai, He, Wang, Yuan (b3) 2019; 30 Hao, Zhang, Li (b8) 2021; 70 Yang, Wang, Cheng, Ma (b28) 2017; 47 Peng, Wang, Wang, Han (b20) 2021; 17 Peng (10.1016/j.oceaneng.2023.115294_b20) 2021; 17 Chen (10.1016/j.oceaneng.2023.115294_b1) 2009; 45 Zhao (10.1016/j.oceaneng.2023.115294_b31) 2014; 22 Li (10.1016/j.oceaneng.2023.115294_b12) 2018; 26 Paliotta (10.1016/j.oceaneng.2023.115294_b17) 2019; 27 Huang (10.1016/j.oceaneng.2023.115294_b9) 2003; 14 Yang (10.1016/j.oceaneng.2023.115294_b28) 2017; 47 Rosa (10.1016/j.oceaneng.2023.115294_b21) 2013; 21 Do (10.1016/j.oceaneng.2023.115294_b5) 2004; 40 Li (10.1016/j.oceaneng.2023.115294_b13) 2022; 18 Wang (10.1016/j.oceaneng.2023.115294_b27) 2019; 15 Park (10.1016/j.oceaneng.2023.115294_b18) 2017; 77 Dai (10.1016/j.oceaneng.2023.115294_b4) 2016; 63 Liu (10.1016/j.oceaneng.2023.115294_b14) 2023 Liu (10.1016/j.oceaneng.2023.115294_b15) 2022; 27 Lv (10.1016/j.oceaneng.2023.115294_b16) 2021; 238 Hao (10.1016/j.oceaneng.2023.115294_b7) 2021; 51 Zhao (10.1016/j.oceaneng.2023.115294_b32) 2022; 67 Hao (10.1016/j.oceaneng.2023.115294_b8) 2021; 70 Zhao (10.1016/j.oceaneng.2023.115294_b30) 2020; 31 Song (10.1016/j.oceaneng.2023.115294_b22) 2021; 68 Zhang (10.1016/j.oceaneng.2023.115294_b29) 2020; 218 Wang (10.1016/j.oceaneng.2023.115294_b24) 2020; 16 Wang (10.1016/j.oceaneng.2023.115294_b25) 2018; 91 Wang (10.1016/j.oceaneng.2023.115294_b26) 2016; 1 Chen (10.1016/j.oceaneng.2023.115294_b2) 2014; 25 El-Ferik (10.1016/j.oceaneng.2023.115294_b6) 2018; 48 Swaroop (10.1016/j.oceaneng.2023.115294_b23) 2000; 45 Jin (10.1016/j.oceaneng.2023.115294_b11) 2016; 68 Park (10.1016/j.oceaneng.2023.115294_b19) 2021; 127 Dai (10.1016/j.oceaneng.2023.115294_b3) 2019; 30 Huang (10.1016/j.oceaneng.2023.115294_b10) 2021; 222 Zhou (10.1016/j.oceaneng.2023.115294_b33) 2021; 236 |
References_xml | – volume: 45 start-page: 1554 year: 2009 end-page: 1560 ident: b1 article-title: Novel adaptive neural control design for nonlinear MIMO time-delay systems publication-title: Automatica – volume: 30 start-page: 3686 year: 2019 end-page: 3698 ident: b3 article-title: Adaptive neural control of underactuated surface vessels with prescribed performance guarantees publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 16 start-page: 1172 year: 2020 end-page: 1181 ident: b24 article-title: Finite-time fault estimator based fault-tolerance control for a surface vehicle with input saturations publication-title: IEEE Trans. Ind. Inform. – volume: 45 start-page: 1893 year: 2000 end-page: 1899 ident: b23 article-title: Dynamic surface control for a class of nonlinear systems publication-title: IEEE Trans. Automat. Control – volume: 238 year: 2021 ident: b16 article-title: Extended-state-observer-based distributed model predictive formation control of under-actuated unmanned surface vehicles with collision avoidance publication-title: Ocean Eng. – year: 2023 ident: b14 article-title: Secure cooperative path following of autonomous surface vehicles under cyber and physical attacks publication-title: IEEE Trans. Intell. Veh. – volume: 15 start-page: 3502 year: 2019 end-page: 3513 ident: b27 article-title: Yaw-guided trajectory tracking control of an asymmetric underactuated surface vehicle publication-title: IEEE Trans. Ind. Inform. – volume: 63 start-page: 1717 year: 2016 end-page: 1727 ident: b4 article-title: Neural learning control of marine surface vessels with guaranteed transient tracking performance publication-title: IEEE Trans. Ind. Electron. – volume: 127 year: 2021 ident: b19 article-title: Connectivity-maintaining and collision-avoiding performance function approach for robust leader–follower formation control of multiple uncertain underactuated surface vessels publication-title: Automatica – volume: 25 start-page: 1217 year: 2014 end-page: 1226 ident: b2 article-title: Adaptive consensus control for a class of nonlinear multiagent time-delay systems using neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 17 start-page: 732 year: 2021 end-page: 745 ident: b20 article-title: An overview of recent advances in coordinated control of multiple autonomous surface vehicles publication-title: IEEE Trans. Ind. Inform. – volume: 27 start-page: 1423 year: 2019 end-page: 1437 ident: b17 article-title: Trajectory tracking and path following for underactuated marine vehicles publication-title: IEEE Trans. Control Syst. Technol. – volume: 218 year: 2020 ident: b29 article-title: Robust trajectory tracking control for underactuated autonomous surface vessels with uncertainty dynamics and unavailable velocities publication-title: Ocean Eng. – volume: 14 start-page: 719 year: 2003 end-page: 722 ident: b9 article-title: Further results on adaptive control for a class of nonlinear systems using neural networks publication-title: IEEE Trans. Neural Netw. – volume: 236 year: 2021 ident: b33 article-title: Fixed-time neural network trajectory tracking control for underactuated surface vessels publication-title: Ocean Eng. – volume: 21 start-page: 242 year: 2013 end-page: 252 ident: b21 article-title: Fault detection and isolation of LPV systems using set-valued observers: An application to a fixed-wing aircraft publication-title: Control Eng. Pract. – volume: 91 start-page: 43 year: 2018 end-page: 53 ident: b25 article-title: Network-based modelling and dynamic output feedback control for unmanned marine vehicles publication-title: Automatica – volume: 70 start-page: 146 year: 2021 end-page: 157 ident: b8 article-title: Fault tolerant control for dynamic positioning of unmanned marine vehicles based on T-S fuzzy model with unknown membership functions publication-title: IEEE Trans. Veh. Technol. – volume: 68 start-page: 228 year: 2016 end-page: 236 ident: b11 article-title: Fault tolerant finite-time leader–follower formation control for autonomous surface vessels with LOS range and angle constraints publication-title: Automatica – volume: 68 start-page: 436 year: 2021 end-page: 440 ident: b22 article-title: Event-triggered adaptive practical fixed-time trajectory tracking control for unmanned surface vehicle publication-title: IEEE Trans. Circuits Syst. II Express Briefs – volume: 48 start-page: 2135 year: 2018 end-page: 2144 ident: b6 article-title: Neuro-adaptive distributed control with prescribed performance for the synchronization of unknown nonlinear networked systems publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 77 start-page: 353 year: 2017 end-page: 359 ident: b18 article-title: Neural network-based output feedback control for reference tracking of underactuated surface vessels publication-title: Automatica – volume: 67 start-page: 1566 year: 2022 end-page: 1573 ident: b32 article-title: Adaptive ssymptotic tracking with global performance for nonlinear systems with unknown control directions publication-title: IEEE Trans. Automat. Control – volume: 51 start-page: 2012 year: 2021 end-page: 2026 ident: b7 article-title: Quantized sliding mode control of unmanned marine vehicles: Various thruster faults tolerated with a unified model publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 26 start-page: 2062 year: 2018 end-page: 2074 ident: b12 article-title: Adaptive fuzzy fault-tolerant control of non-triangular structure nonlinear systems with error-constraint publication-title: IEEE Trans. Fuzzy Syst. – volume: 22 start-page: 1536 year: 2014 end-page: 1543 ident: b31 article-title: Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints publication-title: IEEE Trans. Control Syst. Technol. – volume: 31 start-page: 3471 year: 2020 end-page: 3481 ident: b30 article-title: Adaptive neural quantized control of MIMO nonlinear systems under actuation faults and time-varying output constraints publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 47 start-page: 3148 year: 2017 end-page: 3159 ident: b28 article-title: Neural-learning-based telerobot control with guaranteed performance publication-title: IEEE Trans. Cybern. – volume: 40 start-page: 929 year: 2004 end-page: 944 ident: b5 article-title: Robust adaptive path following of underactuated ships publication-title: Automatica – volume: 222 year: 2021 ident: b10 article-title: Adaptive neural finite-time formation control for multiple underactuated vessels with actuator faults publication-title: Ocean Eng. – volume: 27 start-page: 5736 year: 2022 end-page: 5747 ident: b15 article-title: Network-based multiple operating points cooperative dynamic positioning of unmanned surface vehicles publication-title: IEEE/ASME Trans. Mechatron. – volume: 1 start-page: 230 year: 2016 end-page: 243 ident: b26 article-title: Fast and accurate trajectory tracking control of an autonomous surface vehicle with unmodeled dynamics and disturbances publication-title: IEEE Trans. Intell. Veh. – volume: 18 start-page: 6026 year: 2022 end-page: 6037 ident: b13 article-title: Fuzzy adaptive optimized leader-following formation control for second-order stochastic multiagent systems publication-title: IEEE Trans. Ind. Inform. – volume: 91 start-page: 43 year: 2018 ident: 10.1016/j.oceaneng.2023.115294_b25 article-title: Network-based modelling and dynamic output feedback control for unmanned marine vehicles publication-title: Automatica doi: 10.1016/j.automatica.2018.01.026 – volume: 70 start-page: 146 issue: 1 year: 2021 ident: 10.1016/j.oceaneng.2023.115294_b8 article-title: Fault tolerant control for dynamic positioning of unmanned marine vehicles based on T-S fuzzy model with unknown membership functions publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3050044 – volume: 51 start-page: 2012 issue: 3 year: 2021 ident: 10.1016/j.oceaneng.2023.115294_b7 article-title: Quantized sliding mode control of unmanned marine vehicles: Various thruster faults tolerated with a unified model publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 48 start-page: 2135 issue: 12 year: 2018 ident: 10.1016/j.oceaneng.2023.115294_b6 article-title: Neuro-adaptive distributed control with prescribed performance for the synchronization of unknown nonlinear networked systems publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2017.2702705 – volume: 238 year: 2021 ident: 10.1016/j.oceaneng.2023.115294_b16 article-title: Extended-state-observer-based distributed model predictive formation control of under-actuated unmanned surface vehicles with collision avoidance publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109587 – volume: 15 start-page: 3502 issue: 6 year: 2019 ident: 10.1016/j.oceaneng.2023.115294_b27 article-title: Yaw-guided trajectory tracking control of an asymmetric underactuated surface vehicle publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2877046 – volume: 14 start-page: 719 issue: 3 year: 2003 ident: 10.1016/j.oceaneng.2023.115294_b9 article-title: Further results on adaptive control for a class of nonlinear systems using neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2003.811712 – volume: 22 start-page: 1536 issue: 4 year: 2014 ident: 10.1016/j.oceaneng.2023.115294_b31 article-title: Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2013.2281211 – volume: 47 start-page: 3148 issue: 10 year: 2017 ident: 10.1016/j.oceaneng.2023.115294_b28 article-title: Neural-learning-based telerobot control with guaranteed performance publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2573837 – volume: 77 start-page: 353 year: 2017 ident: 10.1016/j.oceaneng.2023.115294_b18 article-title: Neural network-based output feedback control for reference tracking of underactuated surface vessels publication-title: Automatica doi: 10.1016/j.automatica.2016.11.024 – volume: 68 start-page: 436 issue: 1 year: 2021 ident: 10.1016/j.oceaneng.2023.115294_b22 article-title: Event-triggered adaptive practical fixed-time trajectory tracking control for unmanned surface vehicle publication-title: IEEE Trans. Circuits Syst. II Express Briefs – volume: 31 start-page: 3471 issue: 9 year: 2020 ident: 10.1016/j.oceaneng.2023.115294_b30 article-title: Adaptive neural quantized control of MIMO nonlinear systems under actuation faults and time-varying output constraints publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2944690 – volume: 30 start-page: 3686 issue: 12 year: 2019 ident: 10.1016/j.oceaneng.2023.115294_b3 article-title: Adaptive neural control of underactuated surface vessels with prescribed performance guarantees publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2876685 – volume: 45 start-page: 1554 issue: 6 year: 2009 ident: 10.1016/j.oceaneng.2023.115294_b1 article-title: Novel adaptive neural control design for nonlinear MIMO time-delay systems publication-title: Automatica doi: 10.1016/j.automatica.2009.02.021 – volume: 222 year: 2021 ident: 10.1016/j.oceaneng.2023.115294_b10 article-title: Adaptive neural finite-time formation control for multiple underactuated vessels with actuator faults publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108556 – volume: 218 year: 2020 ident: 10.1016/j.oceaneng.2023.115294_b29 article-title: Robust trajectory tracking control for underactuated autonomous surface vessels with uncertainty dynamics and unavailable velocities publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108099 – volume: 27 start-page: 1423 issue: 4 year: 2019 ident: 10.1016/j.oceaneng.2023.115294_b17 article-title: Trajectory tracking and path following for underactuated marine vehicles publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2018.2834518 – volume: 127 year: 2021 ident: 10.1016/j.oceaneng.2023.115294_b19 article-title: Connectivity-maintaining and collision-avoiding performance function approach for robust leader–follower formation control of multiple uncertain underactuated surface vessels publication-title: Automatica doi: 10.1016/j.automatica.2021.109501 – volume: 25 start-page: 1217 issue: 6 year: 2014 ident: 10.1016/j.oceaneng.2023.115294_b2 article-title: Adaptive consensus control for a class of nonlinear multiagent time-delay systems using neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2302477 – volume: 67 start-page: 1566 issue: 3 year: 2022 ident: 10.1016/j.oceaneng.2023.115294_b32 article-title: Adaptive ssymptotic tracking with global performance for nonlinear systems with unknown control directions publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2021.3074899 – volume: 236 year: 2021 ident: 10.1016/j.oceaneng.2023.115294_b33 article-title: Fixed-time neural network trajectory tracking control for underactuated surface vessels publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109416 – volume: 26 start-page: 2062 issue: 4 year: 2018 ident: 10.1016/j.oceaneng.2023.115294_b12 article-title: Adaptive fuzzy fault-tolerant control of non-triangular structure nonlinear systems with error-constraint publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2017.2761323 – volume: 21 start-page: 242 issue: 3 year: 2013 ident: 10.1016/j.oceaneng.2023.115294_b21 article-title: Fault detection and isolation of LPV systems using set-valued observers: An application to a fixed-wing aircraft publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2012.10.005 – volume: 40 start-page: 929 issue: 6 year: 2004 ident: 10.1016/j.oceaneng.2023.115294_b5 article-title: Robust adaptive path following of underactuated ships publication-title: Automatica doi: 10.1016/j.automatica.2004.01.021 – volume: 1 start-page: 230 issue: 3 year: 2016 ident: 10.1016/j.oceaneng.2023.115294_b26 article-title: Fast and accurate trajectory tracking control of an autonomous surface vehicle with unmodeled dynamics and disturbances publication-title: IEEE Trans. Intell. Veh. doi: 10.1109/TIV.2017.2657379 – issue: 2023 year: 2023 ident: 10.1016/j.oceaneng.2023.115294_b14 article-title: Secure cooperative path following of autonomous surface vehicles under cyber and physical attacks publication-title: IEEE Trans. Intell. Veh. – volume: 17 start-page: 732 issue: 2 year: 2021 ident: 10.1016/j.oceaneng.2023.115294_b20 article-title: An overview of recent advances in coordinated control of multiple autonomous surface vehicles publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.3004343 – volume: 27 start-page: 5736 issue: 6 year: 2022 ident: 10.1016/j.oceaneng.2023.115294_b15 article-title: Network-based multiple operating points cooperative dynamic positioning of unmanned surface vehicles publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2022.3188834 – volume: 45 start-page: 1893 issue: 10 year: 2000 ident: 10.1016/j.oceaneng.2023.115294_b23 article-title: Dynamic surface control for a class of nonlinear systems publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2000.880994 – volume: 18 start-page: 6026 issue: 9 year: 2022 ident: 10.1016/j.oceaneng.2023.115294_b13 article-title: Fuzzy adaptive optimized leader-following formation control for second-order stochastic multiagent systems publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3133927 – volume: 68 start-page: 228 year: 2016 ident: 10.1016/j.oceaneng.2023.115294_b11 article-title: Fault tolerant finite-time leader–follower formation control for autonomous surface vessels with LOS range and angle constraints publication-title: Automatica doi: 10.1016/j.automatica.2016.01.064 – volume: 63 start-page: 1717 issue: 3 year: 2016 ident: 10.1016/j.oceaneng.2023.115294_b4 article-title: Neural learning control of marine surface vessels with guaranteed transient tracking performance publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2504553 – volume: 16 start-page: 1172 issue: 2 year: 2020 ident: 10.1016/j.oceaneng.2023.115294_b24 article-title: Finite-time fault estimator based fault-tolerance control for a surface vehicle with input saturations publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2930471 |
SSID | ssj0006603 |
Score | 2.4304495 |
Snippet | This paper studies the fault-tolerant trajectory tracking control problem of twin-propeller non-rudder unmanned surface vehicles (TPNR USVs) subject to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 115294 |
SubjectTerms | Fault-tolerant control Guaranteed transient performance Trajectory tracking Unmanned surface vehicles |
Title | Adaptive fault-tolerant trajectory tracking control of twin-propeller non-rudder unmanned surface vehicles |
URI | https://dx.doi.org/10.1016/j.oceaneng.2023.115294 |
Volume | 285 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH-4eVFBdCrOj5GD125Lu6bNcYgyFfXiwFtJ86EbsxuzVbz4t5u3pmOCsIO3NPDS8hJ-v9f3FYALLgPFmFJe16C3ilLhpcKOjPIVhu3sLzRGdO8f2GDYu30OnzfgsqqFwbRKh_0lpi_Q2s10nDY7s9EIa3x9bvEVI0XUQm5Yg00_4Cysw2b_5m7wsARkxrpBlemBAiuFwuO2ZQmR6eyljfeIWwAJfd77m6NWeOd6D3adwUj65Tftw4bOGrC90kawATuPuLrrPX0A474SM0QxYkQxyb18OtGWkXKSz8V44aT_wqFEJzlxqepkakj-Ocq8GTrnsTyQZNPMmxfYYIQU2ZtAPCbvxdwIqcmHfl2k0x3C8Prq6XLguSsVPBlQP_e4kCJkhplIU2t6dWUgpIqo8HmkusyukCppzW1lmJ1UkbEErwOJrlLjRxajgyOo29frYyARNdyETDGapr3YyJTHMo6w2bcJFY3jJoSVEhPp-o3jtReTpEosGyeV8hNUflIqvwmdpdys7LixVoJXe5T8OjuJpYU1sif_kD2FLXwqU_vOoJ7PC31uTZQ8bUGt_U1b7iD-AEqY6cs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHnwkRlEjPvfgtcC2dNseCZGgAl4g4dZs96EQLARbjRd_uzu0VUxMPHjbbDvbZrr5ZjrzzSzAdSAcyZiUVkNjtIpSbkXcjLS0JabtzC80ZnT7A9YdNe_G7rgE7aIWBmmVOfZnmL5C63ymnmuzvphMsMbXDgy-YqaIGsh1N2Cz6Toe8vpqH988D8YaTsHzwNvXyoSnNWMjeKzixxqeIm7gw7WD5u8Was3qdPZhL3cXSSt7owMoqbgCO2tNBCuw-4Cr552nD2HaknyBGEY0T2eJlcxnytijhCRLPl2F6N9xKDBETnKiOplrkrxNYmuBoXksDiTxPLaWKbYXIWn8zBGNyUu61Fwo8qqeVmS6Ixh1bobtrpUfqGAJh9qJFXDBXaaZ9hQ1jldDOFxIj3I78GSDmRUiKYyzLTUzk9LTxrwrR2CgVNueQWjnGMrm8eoEiEd1oF0mGY2ipq9FFPjC97DVt3Yl9f0quIUSQ5F3G8dDL2ZhQSubhoXyQ1R-mCm_CvUvuUXWb-NPiaD4RuGPnRMao_CH7Ok_ZK9gqzvs98Le7eD-DLbxSkbyO4dyskzVhXFWkuhytRk_AUsk6pY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+fault-tolerant+trajectory+tracking+control+of+twin-propeller+non-rudder+unmanned+surface+vehicles&rft.jtitle=Ocean+engineering&rft.au=Liu%2C+Zhao-Qing&rft.au=Wang%2C+Yu-Long&rft.au=Han%2C+Qing-Long&rft.date=2023-10-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=285&rft_id=info:doi/10.1016%2Fj.oceaneng.2023.115294&rft.externalDocID=S0029801823016785 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |