Spin gapless armchair graphene nanoribbons under magnetic field and uniaxial strain
Using Green's function method, we investigate the spin transport properties of armchair graphene nanoribbons (AG- NRs) under magnetic field and uniaxial strain. Our results show that it is very difficult to transform narrow AGNRs directly from semiconductor to spin gapless semiconductors (SGS) by ap...
Saved in:
Published in | Chinese physics B Vol. 22; no. 8; pp. 596 - 600 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.08.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/22/8/087303 |
Cover
Loading…
Summary: | Using Green's function method, we investigate the spin transport properties of armchair graphene nanoribbons (AG- NRs) under magnetic field and uniaxial strain. Our results show that it is very difficult to transform narrow AGNRs directly from semiconductor to spin gapless semiconductors (SGS) by applying magnetic fields. However, as a uniaxial strain is exerted on the nanoribbons, the AGNRs can transform to SGS by a small magnetic field. The combination mode be- tween magnetic field and uniaxial strain displays a nonmonotonic arch-pattern relationship. In addition, we find that the combination mode is associated with the widths of nanoribbons, which exhibits group behaviors. |
---|---|
Bibliography: | Hou Hai-Ping, Xie Yue-E, Chen Yuan-Ping, Ouyang Tao, Ge Qing-Xiaa)b), and Zhong Jian-Xin a)Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, China b) Laboratory for Quantum Engineering and Micro-Nano Energy Technology and Faculty of Materials and Optoelectronic Physics, Xiangtan University, Xiangtan 411105, China graphene, spin gapless, spin transport, tight-binding Using Green's function method, we investigate the spin transport properties of armchair graphene nanoribbons (AG- NRs) under magnetic field and uniaxial strain. Our results show that it is very difficult to transform narrow AGNRs directly from semiconductor to spin gapless semiconductors (SGS) by applying magnetic fields. However, as a uniaxial strain is exerted on the nanoribbons, the AGNRs can transform to SGS by a small magnetic field. The combination mode be- tween magnetic field and uniaxial strain displays a nonmonotonic arch-pattern relationship. In addition, we find that the combination mode is associated with the widths of nanoribbons, which exhibits group behaviors. 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/22/8/087303 |