Evidence that electron-dense bodies in Cyanidium caldarium have an iron-storage role
The acidophilic and thermophilic unicellular red alga, Cyanidium caldarium (Tilden) Geitler, is widely distributed in acidic hot springs. Observation by transmission electron microscopy (TEM) showed that algae grown in Allen's medium contained electron-dense bodies with diameters from 100 to 20...
Saved in:
Published in | Biometals Vol. 16; no. 3; pp. 465 - 470 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English Dutch |
Published |
Netherlands
Springer Nature B.V
01.09.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The acidophilic and thermophilic unicellular red alga, Cyanidium caldarium (Tilden) Geitler, is widely distributed in acidic hot springs. Observation by transmission electron microscopy (TEM) showed that algae grown in Allen's medium contained electron-dense bodies with diameters from 100 to 200 nm. Electron dispersive x-ray analysis indicated that the electron-dense bodies contained high levels of iron, phosphorous, and oxygen; P/Fe ratios were from 1.3 to 2.0. The electron spin resonance (ESR) spectrum of the intact C. caldarium cells showed an isotropic signal at a g value of 2.00. Density-gradient centrifugation of the cell lysate yielded a fraction that included substances showing the isotropic ESR signal. EDTA treatment of this fraction reduced the ESR signal intensity, whereas it increased a signal that is typical of Fe(III)-EDTA. The fact that the isotropic signal dominates the ESR spectrum, together with a previous finding that iron is confined to the electron-dense bodies, led us to conclude that iron in the electron-dense bodies accounts for the isotropic ESR signal. Since the intensity of the ESR signal depends on the amount of iron in the cells, the electron-dense bodies are probably iron storage sites. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0966-0844 1572-8773 |
DOI: | 10.1023/A:1022563600525 |