Effects of the p-AlInGaN/GaN superlattices' structure on the performance of blue LEDs
The advantages of the p-AIInGaN/GaN superlattices' (SLs) structure as an electron blocking layer (EBL) for InGaN blue light-emitting diodes (LEDs) were studied by experiment and APSYS simulation. Elec- troluminescence (EL) measurement results show that the LEDs with the p-AllnGaN/GaN SLs' structure...
Saved in:
Published in | Journal of semiconductors Vol. 35; no. 2; pp. 72 - 75 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.02.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The advantages of the p-AIInGaN/GaN superlattices' (SLs) structure as an electron blocking layer (EBL) for InGaN blue light-emitting diodes (LEDs) were studied by experiment and APSYS simulation. Elec- troluminescence (EL) measurement results show that the LEDs with the p-AllnGaN/GaN SLs' structure EBL ex- hibited better optical performance compared with the conventional A1GaN EBL due to the enhancement of hole concentration and hole carrier transport efficiency, and the confinement of electrons' overflow between multiple quantum-wells (MQWs) and EBL. |
---|---|
Bibliography: | EBL; p-AllnGaN/GaN SLs; multiple quantum-wells 11-5781/TN The advantages of the p-AIInGaN/GaN superlattices' (SLs) structure as an electron blocking layer (EBL) for InGaN blue light-emitting diodes (LEDs) were studied by experiment and APSYS simulation. Elec- troluminescence (EL) measurement results show that the LEDs with the p-AllnGaN/GaN SLs' structure EBL ex- hibited better optical performance compared with the conventional A1GaN EBL due to the enhancement of hole concentration and hole carrier transport efficiency, and the confinement of electrons' overflow between multiple quantum-wells (MQWs) and EBL. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-4926 |
DOI: | 10.1088/1674-4926/35/2/024010 |