Hybrid device for acoustic noise reduction and energy harvesting based on a silicon micro-perforated panel structure
A kind of hybrid device for acoustic noise reduction and vibration energy harvesting based on the silicon micro- perforated panel (MPP) resonant structure is investigated in the article. The critical parts of the device include MPP and energy harvesting membranes. They are all fabricated by means of...
Saved in:
Published in | Chinese physics B Vol. 23; no. 4; pp. 351 - 357 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.04.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/23/4/044302 |
Cover
Summary: | A kind of hybrid device for acoustic noise reduction and vibration energy harvesting based on the silicon micro- perforated panel (MPP) resonant structure is investigated in the article. The critical parts of the device include MPP and energy harvesting membranes. They are all fabricated by means of silicon micro-electro-mechanical systems (MEMS) tech- nology. The silicon MPP has dense and accurate micro-holes. This noise reduction structure has the advantages of wide band and higher absorption coefficients. The vibration energy harvesting part is formed by square piezoelectric membranes arranged in rows. ZnO material is used as it has a good compatibility with the fabrication process. The MPP, piezo- electric membranes, and metal bracket are assembled into a hybrid device with multifunctions. The device exhibits good performances of acoustic noise absorption and acoustic-electric conversion. Its maximum open circuit voltage achieves 69.41 mV. |
---|---|
Bibliography: | A kind of hybrid device for acoustic noise reduction and vibration energy harvesting based on the silicon micro- perforated panel (MPP) resonant structure is investigated in the article. The critical parts of the device include MPP and energy harvesting membranes. They are all fabricated by means of silicon micro-electro-mechanical systems (MEMS) tech- nology. The silicon MPP has dense and accurate micro-holes. This noise reduction structure has the advantages of wide band and higher absorption coefficients. The vibration energy harvesting part is formed by square piezoelectric membranes arranged in rows. ZnO material is used as it has a good compatibility with the fabrication process. The MPP, piezo- electric membranes, and metal bracket are assembled into a hybrid device with multifunctions. The device exhibits good performances of acoustic noise absorption and acoustic-electric conversion. Its maximum open circuit voltage achieves 69.41 mV. 11-5639/O4 hybrid device, noise energy harvesting, acoustic noise reduction, silicon micro-perforated panel ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/23/4/044302 |