General and efficient simulation of pulse EPR spectra

We present a rather general and efficient method of simulating electron-spin echo spectra for spin systems where the microwave frequency does not simultaneously excite EPR transitions that share a common level. The approach can handle arbitrary pulse sequences with microwave pulses of arbitrary leng...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 11; no. 31; pp. 6614 - 6625
Main Authors STOLL, Stefan, BRITT, R. David
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a rather general and efficient method of simulating electron-spin echo spectra for spin systems where the microwave frequency does not simultaneously excite EPR transitions that share a common level. The approach can handle arbitrary pulse sequences with microwave pulses of arbitrary length and strength. The signal is computed as a sum over signals from the electron coherence transfer pathways contributing to the detected echo. For each pathway, amplitudes and frequencies of the signal components are computed and used to construct a spectral histogram from which the time-domain signal is obtained. For multinuclear spin systems, the nuclear subspace is factorized to accelerate the computation. The method is also applicable to high electron spin systems with significant zero-field splitting and to pulse electron-nuclear double resonance experiments. The method is implemented in the software package EasySpin, and several illustrative calculations are shown.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1463-9076
1463-9084
DOI:10.1039/b907277b