A tunnel regenerated coupled multi-active-region large optical cavity laser with a high quality beam

A novel coupled multi-active-region large optical cavity structure cascaded by a tunnel junction is proposed to solve the problems of facet catastrophic optical damage (COD) and the large vertical divergence caused by the thin emitting area in conventional laser diodes. For a laser with three active...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 21; no. 9; pp. 305 - 308
Main Author 崔碧峰 郭伟玲 杜晓东 李建军 邹德恕 沈光地
Format Journal Article
LanguageEnglish
Published 01.09.2012
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/21/9/094209

Cover

Loading…
More Information
Summary:A novel coupled multi-active-region large optical cavity structure cascaded by a tunnel junction is proposed to solve the problems of facet catastrophic optical damage (COD) and the large vertical divergence caused by the thin emitting area in conventional laser diodes. For a laser with three active regions, a slope efficiency as high as 1.49 W/A, a vertical divergence angle of 17.4~, and a threshold current density of 271 A/cm~ are achieved. By optimizing the structural parameters, the beam quMity is greatly improved, and the level of the COD power increases by more than two times compared with that of the conventional laser.
Bibliography:large cavity, vertical divergence angle, catastrophic optical damage, beam quality
Cui Bi-Feng, Guo Wei-Ling, Du Xiao-Dong, Li Jian-Jun, Zou De-Shu, and Shen Guang-Di Key Laboratory of Opto-electronics Technology of Ministry of Education, Beijing University of Technology, Beijing 100124, China
A novel coupled multi-active-region large optical cavity structure cascaded by a tunnel junction is proposed to solve the problems of facet catastrophic optical damage (COD) and the large vertical divergence caused by the thin emitting area in conventional laser diodes. For a laser with three active regions, a slope efficiency as high as 1.49 W/A, a vertical divergence angle of 17.4~, and a threshold current density of 271 A/cm~ are achieved. By optimizing the structural parameters, the beam quMity is greatly improved, and the level of the COD power increases by more than two times compared with that of the conventional laser.
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/21/9/094209