High-Voltage AlGaN/GaN-Based Lateral Schottky Barrier Diodes

Lateral Schottky barrier diodes (SBDs) on A1GaN/GaN heterojunctions are fabricated and studied. The characteristics of the fabricated SBDs with different Schottky contact diameters and different Schottky-Ohmic contact spacings are investigated. The breakdown voltage can be increased by either increa...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 31; no. 6; pp. 237 - 240
Main Author 康贺 王权 肖红领 王翠梅 姜丽娟 冯舂 陈竑 殷海波 王晓亮 王占国 侯洵
Format Journal Article
LanguageEnglish
Published 01.06.2014
Subjects
Online AccessGet full text
ISSN0256-307X
1741-3540
DOI10.1088/0256-307X/31/6/068502

Cover

Loading…
More Information
Summary:Lateral Schottky barrier diodes (SBDs) on A1GaN/GaN heterojunctions are fabricated and studied. The characteristics of the fabricated SBDs with different Schottky contact diameters and different Schottky-Ohmic contact spacings are investigated. The breakdown voltage can be increased by either increasing the Schottky-Ohmie con- tact spacing or increasing the Schottky contact diameter. However, the specific on-resistance is increased at the same time. A high breakdown voltage of 1400 V and low reverse leakage current below 20nA are achieved by the device with a Schottky contact diameter of 100 μm and a contact spacing of 40 μm, yielding a high V^2BR/ RoN,sp value of 194 MW.cm^-2.
Bibliography:Lateral Schottky barrier diodes (SBDs) on A1GaN/GaN heterojunctions are fabricated and studied. The characteristics of the fabricated SBDs with different Schottky contact diameters and different Schottky-Ohmic contact spacings are investigated. The breakdown voltage can be increased by either increasing the Schottky-Ohmie con- tact spacing or increasing the Schottky contact diameter. However, the specific on-resistance is increased at the same time. A high breakdown voltage of 1400 V and low reverse leakage current below 20nA are achieved by the device with a Schottky contact diameter of 100 μm and a contact spacing of 40 μm, yielding a high V^2BR/ RoN,sp value of 194 MW.cm^-2.
KANG He, WANG Quan, XIAO Hong-Ling, WANG Cui-Mei, JIANG Li-Juan, FENG Chun, CHEN Hong, YIN Hai-Bo, WANG Xiao-Liang, WANG Zhan-Guo, HOU Xun( 1Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2 Beijing Key Laboratory of Low-Dimensional Semiconductor Materials and Devices, Beijing 100083 alSCAS-XJTU Joint Laboratory of Fhnctional Materials and Devices for Informatics, Beijing 100083)
11-1959/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0256-307X
1741-3540
DOI:10.1088/0256-307X/31/6/068502