Cost-Effectiveness of Plasma Microbial Cell-Free DNA Sequencing When Added to Usual Care Diagnostic Testing for Immunocompromised Host Pneumonia

Introduction Immunocompromised host pneumonia (ICHP) is an important cause of morbidity and mortality, yet usual care (UC) diagnostic tests often fail to identify an infectious etiology. A US-based, multicenter study (PICKUP) among ICHP patients with hematological malignancies, including hematologic...

Full description

Saved in:
Bibliographic Details
Published inPharmacoEconomics Vol. 42; no. 9; pp. 1029 - 1045
Main Authors Sutton, Andrew J., Lupu, Daniel S., Bergin, Stephen P., Holland, Thomas L., McAdams, Staci A., Dadwal, Sanjeet S., Nguyen, Khoi, Nolte, Frederick S., Tremblay, Gabriel, Perkins, Bradley A.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Introduction Immunocompromised host pneumonia (ICHP) is an important cause of morbidity and mortality, yet usual care (UC) diagnostic tests often fail to identify an infectious etiology. A US-based, multicenter study (PICKUP) among ICHP patients with hematological malignancies, including hematological cell transplant recipients, showed that plasma microbial cell-free DNA (mcfDNA) sequencing provided significant additive diagnostic value. Aim The objective of this study was to perform a cost-effectiveness analysis (CEA) of adding mcfDNA sequencing to UC diagnostic testing for hospitalized ICHP patients. Methods A semi-Markov model was utilized from the US third-party payer’s perspective such that only direct costs were included, using a lifetime time horizon with discount rates of 3% for costs and benefits. Three comparators were considered: (1) All UC , which included non-invasive (NI) and invasive testing and early bronchoscopy; (2) All UC & mcfDNA ; and (3) NI UC & mcfDNA & conditional UC Bronch (later bronchoscopy if the initial tests are negative). The model considered whether a probable causative infectious etiology was identified and if the patient received appropriate antimicrobial treatment through expert adjudication, and if the patient died in-hospital. The primary endpoints were total costs, life-years (LYs), equal value life-years (evLYs), quality-adjusted life-years (QALYs), and the incremental cost-effectiveness ratio per QALY. Extensive scenario and probabilistic sensitivity analyses (PSA) were conducted. Results At a price of $2000 (2023 USD) for the plasma mcfDNA, All UC & mcfDNA was more costly ($165,247 vs $153,642) but more effective (13.39 vs 12.47 LYs gained; 10.20 vs 9.42 evLYs gained; 10.11 vs 9.42 QALYs gained) compared to All UC alone, giving a cost/QALY of $16,761. NI UC & mcfDNA & conditional UC Bronch was also more costly ($162,655 vs $153,642) and more effective (13.19 vs 12.47 LYs gained; 9.96 vs 9.42 evLYs gained; 9.96 vs 9.42 QALYs gained) compared to All UC alone, with a cost/QALY of $16,729. The PSA showed that above a willingness-to-pay threshold of $50,000/QALY, All UC & mcfDNA was the preferred scenario on cost-effectiveness grounds (as it provides the most QALYs gained). Further scenario analyses found that All UC & mcfDNA always improved patient outcomes but was not cost saving, even when the price of mcfDNA was set to $0. Conclusions Based on the evidence available at the time of this analysis, this CEA suggests that mcfDNA may be cost-effective when added to All UC, as well as in a scenario using conditional bronchoscopy when NI testing fails to identify a probable infectious etiology for ICHP. Adding mcfDNA testing to UC diagnostic testing should allow more patients to receive appropriate therapy earlier and improve patient outcomes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1170-7690
1179-2027
1179-2027
DOI:10.1007/s40273-024-01409-4