Efficient kernel fuzzy clustering via random Fourier superpixel and graph prior for color image segmentation
The kernel fuzzy clustering algorithms can explore the non-linear relations of pixels in an image. However, most of kernel-based methods are computationally expensive for color image segmentation and neglect the inherent locality information in images. To alleviate these limitations, this paper prop...
Saved in:
Published in | Engineering applications of artificial intelligence Vol. 116; p. 105335 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The kernel fuzzy clustering algorithms can explore the non-linear relations of pixels in an image. However, most of kernel-based methods are computationally expensive for color image segmentation and neglect the inherent locality information in images. To alleviate these limitations, this paper proposes a novel kernel fuzzy clustering framework for fast color image segmentation. More specifically, we first design a new superpixel generation method that uses random Fourier maps to approximate Gaussian kernels and explicitly represent high-dimensional features of pixels. Clustering superpixels instead of large-sized pixels speeds up the segmentation of a color image significantly. More importantly, the features of superpixels used by fuzzy clustering are also calculated in the approximated kernel space and the local relationships between superpixels are depicted as a graph prior and appended into the objective function of fuzzy clustering as a Kullback–Leibler divergence term. This results in a new fuzzy clustering model that can further improve the accuracy of the image segmentation. Experiments on synthetic and real-world color image datasets verify the superiority and high efficiency of the proposed approach. |
---|---|
ISSN: | 0952-1976 1873-6769 |
DOI: | 10.1016/j.engappai.2022.105335 |