Adiabatic tunneling of Bose-Einstein condensates with modulated atom interaction in a double-well potential
We study the adiabatic tunneling of Bose-Einstein condensates in a symmetric double-well potential when the inter- action strength between the atoms is modulated linearly or in a cosine periodic form. It is shown that the system evolves along a nonlinear eigenstate path. In the case of linear modula...
Saved in:
Published in | Chinese physics B Vol. 23; no. 7; pp. 284 - 287 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.07.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We study the adiabatic tunneling of Bose-Einstein condensates in a symmetric double-well potential when the inter- action strength between the atoms is modulated linearly or in a cosine periodic form. It is shown that the system evolves along a nonlinear eigenstate path. In the case of linear modulation under the adiabatic approximation conditions, the tun- neling probability of the condensate atoms to the other potential well is half. However, when the system is periodically scanned in the adiabatic process, we find an interesting phenomenon. A small change in the cycle period can lead to the condensate atoms returning to the right well or tunneling to the left well. The system comes from a linear eigenstate back to a nonlinear one, which is completely different from the linear eigenstate evolution. We explain the results by using the energy level and the phase diagram. |
---|---|
Bibliography: | We study the adiabatic tunneling of Bose-Einstein condensates in a symmetric double-well potential when the inter- action strength between the atoms is modulated linearly or in a cosine periodic form. It is shown that the system evolves along a nonlinear eigenstate path. In the case of linear modulation under the adiabatic approximation conditions, the tun- neling probability of the condensate atoms to the other potential well is half. However, when the system is periodically scanned in the adiabatic process, we find an interesting phenomenon. A small change in the cycle period can lead to the condensate atoms returning to the right well or tunneling to the left well. The system comes from a linear eigenstate back to a nonlinear one, which is completely different from the linear eigenstate evolution. We explain the results by using the energy level and the phase diagram. adiabatic tunneling, Bose-Einstein condensates, double-well potential 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/23/7/070307 |