Crystalline undulator radiation and sub-harmonic bifurcation of system

Looking for new light sources, especially short wavelength laser light sources has attracted widespread attention. This paper analytically describes the radiation of a crystalline undulator field by the sine-squared potential. In the classical mechanics and the dipole approximation, the motion equat...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 22; no. 6; pp. 401 - 404
Main Author 罗晓华 何为 吴木营 邵明珠 罗诗裕
Format Journal Article
LanguageEnglish
Published 01.06.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Looking for new light sources, especially short wavelength laser light sources has attracted widespread attention. This paper analytically describes the radiation of a crystalline undulator field by the sine-squared potential. In the classical mechanics and the dipole approximation, the motion equation of a particle is reduced to a generalized pendulum equation with a damping term and a forcing term. The bifurcation behavior of periodic orbits is analyzed by using the Melnikov method and the numerical method, and the stability of the system is discussed. The results show that, in principle, the stability of the system relates to its parameters, and only by adjusting these parameters appropriately can the occurrence of bifurcation be avoided or suppressed.
Bibliography:Looking for new light sources, especially short wavelength laser light sources has attracted widespread attention. This paper analytically describes the radiation of a crystalline undulator field by the sine-squared potential. In the classical mechanics and the dipole approximation, the motion equation of a particle is reduced to a generalized pendulum equation with a damping term and a forcing term. The bifurcation behavior of periodic orbits is analyzed by using the Melnikov method and the numerical method, and the stability of the system is discussed. The results show that, in principle, the stability of the system relates to its parameters, and only by adjusting these parameters appropriately can the occurrence of bifurcation be avoided or suppressed.
crystalline undulator radiation, short wavelength laser, Melnikov method, bifurcation, stability
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/22/6/064210