Second-order two-scale computations for conductive-radiative heat transfer problem in periodic porous materials

In this paper, a kind of second-order two-scale (SOTS) computation is developed for conductive-radiative heat trans- fer problem in periodic porous materials. First of all, by the asymptotic expansion of the temperature field, the cell problem, homogenization problem, and second-order correctors are...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 23; no. 3; pp. 91 - 98
Main Author 杨志强 崔俊芝 李博文
Format Journal Article
LanguageEnglish
Published 01.03.2014
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/23/3/030203

Cover

More Information
Summary:In this paper, a kind of second-order two-scale (SOTS) computation is developed for conductive-radiative heat trans- fer problem in periodic porous materials. First of all, by the asymptotic expansion of the temperature field, the cell problem, homogenization problem, and second-order correctors are obtained successively. Then, the corresponding finite element al- gorithms are proposed. Finally, some numerical results are presented and compared with theoretical results. The numerical results of the proposed algorithm conform with those of the FE algorithm well, demonstrating the accuracy of the present method and its potential applications in thermal engineering of porous materials.
Bibliography:In this paper, a kind of second-order two-scale (SOTS) computation is developed for conductive-radiative heat trans- fer problem in periodic porous materials. First of all, by the asymptotic expansion of the temperature field, the cell problem, homogenization problem, and second-order correctors are obtained successively. Then, the corresponding finite element al- gorithms are proposed. Finally, some numerical results are presented and compared with theoretical results. The numerical results of the proposed algorithm conform with those of the FE algorithm well, demonstrating the accuracy of the present method and its potential applications in thermal engineering of porous materials.
second-order two-scale (SOTS) computations, periodic porous materials, conductive-radiativeheat transfer
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/23/3/030203