Modeling of Fano Resonance in High-Contrast Resonant Grating Structures

A new model is presented for Fano resonance in resonant grating structure based on the temporal coupled mode theory. By using this model, the reflection spectrum can be reproduced with the information of eigenmode of the structure, which can be numerically calculated by the finite element method. Th...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 31; no. 6; pp. 109 - 112
Main Author 胡劲华 黄永清 任晓敏 段晓峰 李业弘 王琦 张霞 王俊
Format Journal Article
LanguageEnglish
Published 01.06.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A new model is presented for Fano resonance in resonant grating structure based on the temporal coupled mode theory. By using this model, the reflection spectrum can be reproduced with the information of eigenmode of the structure, which can be numerically calculated by the finite element method. Therefore, the eigenmode plays a key role in determining the profile of the line shape of the Fano resonance in the resonant grating structure. When the space of two grating modulations is decreased, the line shape experiences a significant change. Such a drastic change can be attributed to the increase of quality factor of the eigenmodes. Thus, our model not only provides a simple and intuitive understanding on the mechanism of Fano resonance, but it also offers a convenient way to engineer the line shape of the Fano resonance. The proposed model can be used in many applications, such as biosensors, optical filters, and optical switchers.
Bibliography:11-1959/O4
A new model is presented for Fano resonance in resonant grating structure based on the temporal coupled mode theory. By using this model, the reflection spectrum can be reproduced with the information of eigenmode of the structure, which can be numerically calculated by the finite element method. Therefore, the eigenmode plays a key role in determining the profile of the line shape of the Fano resonance in the resonant grating structure. When the space of two grating modulations is decreased, the line shape experiences a significant change. Such a drastic change can be attributed to the increase of quality factor of the eigenmodes. Thus, our model not only provides a simple and intuitive understanding on the mechanism of Fano resonance, but it also offers a convenient way to engineer the line shape of the Fano resonance. The proposed model can be used in many applications, such as biosensors, optical filters, and optical switchers.
HU Jin-Hua, HUANG Yong-Qing, REN Xiao-Min, DUAN Xiao-Feng, LI Ye-Hong, WANG Qi, ZHANG Xia, WANG Jun(State Key Laboratory of Information Photonics and Optical Communications, Institute of Optical Communication and Optoelectronics, Beijing University of Posts and Telecommunications, Beijing 100876)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0256-307X
1741-3540
DOI:10.1088/0256-307X/31/6/064205