Global Convergence of Radial Basis Function Trust-Region Algorithms for Derivative-Free Optimization
We analyze globally convergent, derivative-free trust-region algorithms relying on radial basis function interpolation models. Our results extend the recent work of Conn, Scheinberg, and Vicente [SIAM J. Optim., 20 (2009), pp. 387–415] to fully linear models that have a nonlinear term. We characteri...
Saved in:
Published in | SIAM review Vol. 55; no. 2; pp. 349 - 371 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We analyze globally convergent, derivative-free trust-region algorithms relying on radial basis function interpolation models. Our results extend the recent work of Conn, Scheinberg, and Vicente [SIAM J. Optim., 20 (2009), pp. 387–415] to fully linear models that have a nonlinear term. We characterize the types of radial basis functions that fit in our analysis and thus show global convergence to first-order critical points for the ORBIT algorithm of Wild, Regis, and Shoemaker [SIAM J. Sci. Comput., 30 (2008), pp. 3197–3219]. Using ORBIT, we present numerical results for different types of radial basis functions on a series of test problems. We also demonstrate the use of ORBIT in finding local minima on a computationally expensive environmental engineering problem involving remediation of contaminated groundwater. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0036-1445 1095-7200 |
DOI: | 10.1137/120902434 |