Radiation characteristics and implosion dynamics of tungsten wire array Z-pinches on the YANG accelerator
We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 MA and a rising time ~ 90 ns.The arrays are made up of(8-32)×5 μm wires 6/10 mm in diameter and 15 mm in height.The hi...
Saved in:
Published in | Chinese physics B Vol. 21; no. 5; pp. 410 - 417 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.05.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/21/5/055206 |
Cover
Summary: | We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 MA and a rising time ~ 90 ns.The arrays are made up of(8-32)×5 μm wires 6/10 mm in diameter and 15 mm in height.The highest X-ray power obtained in the experiments was about 0.37 TW with the total radiation energy ~ 13 kJ and the energy conversion efficiency ~ 9%(24×5 μm wires,6 mm in diameter).Most of the X-ray emissions from tungsten Z-pinch plasmas were distributed in the spectral band of 100-600 eV,peaked at 250 and 375 eV.The dominant wavelengths of the wire ablation and the magneto-Rayleigh-Taylor instability were found and analyzed through measuring the time-gated self-emission and laser interferometric images.Through analyzing the implosion trajectories obtained by an optical streak camera,the run-in velocities of the Z-pinch plasmas at the end of the implosion phase were determined to be about(1.3-2.1)×10 7 cm/s. |
---|---|
Bibliography: | We investigated the radiation characteristics and implosion dynamics of low-wire-number cylindrical tungsten wire array Z-pinches on the YANG accelerator with a peak current 0.8-1.1 MA and a rising time ~ 90 ns.The arrays are made up of(8-32)×5 μm wires 6/10 mm in diameter and 15 mm in height.The highest X-ray power obtained in the experiments was about 0.37 TW with the total radiation energy ~ 13 kJ and the energy conversion efficiency ~ 9%(24×5 μm wires,6 mm in diameter).Most of the X-ray emissions from tungsten Z-pinch plasmas were distributed in the spectral band of 100-600 eV,peaked at 250 and 375 eV.The dominant wavelengths of the wire ablation and the magneto-Rayleigh-Taylor instability were found and analyzed through measuring the time-gated self-emission and laser interferometric images.Through analyzing the implosion trajectories obtained by an optical streak camera,the run-in velocities of the Z-pinch plasmas at the end of the implosion phase were determined to be about(1.3-2.1)×10 7 cm/s. 11-5639/O4 Z-pinch; tungsten wire array; X-ray radiation; implosion dynamics Huang Xian-Bin,Yang Li-Bing,Li Jing,Zhou Shao-Tong,Ren Xiao-Dong,Zhang Si-Qun,Dan Jia-Kun,Cai Hong-Chun,Duan Shu-Chao,Chen Guang-Hua,Zhang Zheng-Wei,Ouyang Kai,Li Jun,Zhang Zhao-Hui,Zhou Rong-Guo,and Wang Gui-Lin Institute of Fluid Physics,China Academy of Engineering Physics,Mianyang 621900,China ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/21/5/055206 |