Analyzing total optical absorption coefficient of impurity doped quantum dots in presence of noise with special emphasis on electric field, magnetic field and confinement potential
[Display omitted] •Total optical absorption coefficient (TOAC) of impurity doped quantum dot is studied.•The dot is subject to Gaussian white noise.•TOAC is affected by various important parameters.•Noise influences TOAC profiles noticeably.•Findings may have technological importance. We make an ext...
Saved in:
Published in | Chemical physics Vol. 463; pp. 149 - 158 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
16.12.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Total optical absorption coefficient (TOAC) of impurity doped quantum dot is studied.•The dot is subject to Gaussian white noise.•TOAC is affected by various important parameters.•Noise influences TOAC profiles noticeably.•Findings may have technological importance.
We make an extensive investigation of total optical absorption coefficient (TOAC) of impurity doped quantum dots (QDs) in presence and absence of Gaussian white noise. The TOAC profiles have been monitored against incident photon energy with special emphasis on the roles played by the electric field, magnetic field, and the dot confinement potential. Presence of impurity also influences the TOAC profile. In general, presence of noise causes enhancement of TOAC over that of noise-free condition. However, the interplay between the noise and the quantities like electric field, magnetic field, confinement potential and impurity potential bring about rich subtleties in the TOAC profiles. The said subtleties are often manifested by the alterations in TOAC peak intensity, extent of TOAC peak bleaching, and value of saturation intensity. The findings reveal some technologically relevant aspects of TOAC for the doped QD systems, specially in presence of noise. |
---|---|
AbstractList | [Display omitted]
•Total optical absorption coefficient (TOAC) of impurity doped quantum dot is studied.•The dot is subject to Gaussian white noise.•TOAC is affected by various important parameters.•Noise influences TOAC profiles noticeably.•Findings may have technological importance.
We make an extensive investigation of total optical absorption coefficient (TOAC) of impurity doped quantum dots (QDs) in presence and absence of Gaussian white noise. The TOAC profiles have been monitored against incident photon energy with special emphasis on the roles played by the electric field, magnetic field, and the dot confinement potential. Presence of impurity also influences the TOAC profile. In general, presence of noise causes enhancement of TOAC over that of noise-free condition. However, the interplay between the noise and the quantities like electric field, magnetic field, confinement potential and impurity potential bring about rich subtleties in the TOAC profiles. The said subtleties are often manifested by the alterations in TOAC peak intensity, extent of TOAC peak bleaching, and value of saturation intensity. The findings reveal some technologically relevant aspects of TOAC for the doped QD systems, specially in presence of noise. |
Author | Ghosh, Manas Mandal, Arkajit Sarkar, Sucharita Ghosh, Arghya Pratim |
Author_xml | – sequence: 1 givenname: Arkajit surname: Mandal fullname: Mandal, Arkajit – sequence: 2 givenname: Sucharita surname: Sarkar fullname: Sarkar, Sucharita – sequence: 3 givenname: Arghya Pratim surname: Ghosh fullname: Ghosh, Arghya Pratim – sequence: 4 givenname: Manas surname: Ghosh fullname: Ghosh, Manas email: pcmg77@rediffmail.com |
BookMark | eNqFkMtOQjEQhrvAREBfwfQBBNtzAxIXEuItIXGj65NepjDknPbYFg0-lw9oT9CNG1b_zGT-f9pvRAbWWSDkirMpZ7y62U3VFtpuewjTjPEyDaeMFwMyZDnjE8ZZcU5GIewYY-U8L4fke2lFc_hCu6HRRdFQ10VUSYUMzqfaWaocGIMKwUbqDMW223uMB6pdB5q-74WN-zZ1MVC0tPMQwCroV63DAPQT45aGDhSm3P51ImCgKRgaUNGjogah0de0FRsL8a-nwup02xq00Pa3OxeTpJALcmZEE-DyV8fk7eH-dfU0Wb88Pq-W64nKeRYnfC5BaSk151UpF4VcmEorkVeQyWwmCjmrinwGsuQccl3p3GRcV4rNFpAJLUQ-JrfHXOVdCB5MrTCKnkn0Apuas7qnXu_qP-p1T72fJ-rJXv2zdx5b4Q-njXdHI6TPfSD4OvT0FWj0iVitHZ6K-AETE6xi |
CitedBy_id | crossref_primary_10_1016_j_physb_2016_12_031 crossref_primary_10_1140_epjp_s13360_024_05064_8 crossref_primary_10_1016_j_physb_2023_414818 crossref_primary_10_1016_j_physe_2016_03_033 crossref_primary_10_3103_S1068337219020075 crossref_primary_10_1142_S0217979219500097 crossref_primary_10_1142_S0217979219502254 crossref_primary_10_1016_j_physe_2021_114919 crossref_primary_10_1080_14786435_2019_1619949 crossref_primary_10_29002_asujse_302748 crossref_primary_10_1002_pssb_202300094 crossref_primary_10_1016_j_optcom_2021_127266 crossref_primary_10_1016_j_chemphys_2016_09_001 crossref_primary_10_1016_j_cplett_2018_08_010 crossref_primary_10_1016_j_chemphys_2017_06_004 crossref_primary_10_1016_j_cplett_2017_06_064 crossref_primary_10_1140_epjp_s13360_021_01955_2 crossref_primary_10_1140_epjp_s13360_022_03362_7 crossref_primary_10_1016_j_physb_2024_416769 crossref_primary_10_1088_1674_1056_ab9284 crossref_primary_10_1016_j_chemphys_2016_05_010 crossref_primary_10_3390_ma11050668 crossref_primary_10_1016_j_physb_2017_01_018 crossref_primary_10_1155_2019_3478506 crossref_primary_10_1016_j_spmi_2017_06_019 crossref_primary_10_1016_j_chemphys_2016_10_012 crossref_primary_10_1088_1402_4896_ad3150 crossref_primary_10_1016_j_physb_2022_414379 crossref_primary_10_1016_j_chemphys_2018_07_049 crossref_primary_10_1016_j_physb_2022_414575 crossref_primary_10_1016_j_chemphys_2016_06_010 crossref_primary_10_1088_1555_6611_ab0a64 |
Cites_doi | 10.1016/j.spmi.2010.06.014 10.1016/j.optcom.2011.02.071 10.1063/1.3582137 10.1016/j.spmi.2010.06.015 10.1016/j.spmi.2011.07.011 10.1016/j.spmi.2010.08.009 10.1016/j.jlumin.2011.02.028 10.1016/j.spmi.2012.01.012 10.1016/j.spmi.2009.12.004 10.1016/j.jlumin.2013.02.030 10.1016/j.physb.2009.01.037 10.1016/j.ssc.2012.05.023 10.1016/j.physb.2011.08.105 10.1016/j.physb.2008.09.021 10.1016/j.apsusc.2010.06.004 10.1016/j.jlumin.2013.04.048 10.1016/j.jlumin.2012.03.065 10.1016/j.spmi.2011.04.007 10.1063/1.4875377 10.1016/j.optcom.2009.06.043 10.1016/j.physb.2010.05.019 10.1002/1521-3951(200007)220:1<187::AID-PSSB187>3.0.CO;2-D 10.1006/spmi.2000.0907 10.1016/j.spmi.2011.11.012 10.1016/j.physb.2014.07.003 10.1140/epjb/e2011-20470-9 10.1063/1.4751483 10.1016/j.physleta.2007.08.046 10.1016/j.physleta.2008.06.059 10.1016/j.spmi.2014.05.023 10.1088/0953-8984/13/11/312 10.1016/j.spmi.2011.08.002 10.1016/j.chemphys.2006.12.014 10.1140/epjb/e2007-00055-1 10.1016/j.spmi.2012.10.014 10.1016/j.cap.2010.07.002 10.1016/j.physleta.2009.06.042 10.1002/pssb.200945491 10.1063/1.371394 10.1016/j.physe.2005.01.018 10.1063/1.4813094 10.1016/j.physleta.2012.04.028 10.1016/j.jlumin.2012.02.033 10.1016/j.optcom.2009.12.027 10.1016/j.physe.2006.03.163 10.1002/pssb.201451374 10.1016/j.physleta.2010.04.049 10.1016/j.chemphys.2012.06.002 10.1016/j.physb.2012.05.049 10.1016/j.chemphys.2012.09.023 10.1016/j.physb.2012.03.030 10.1063/1.362590 10.1016/j.physe.2008.12.012 10.1016/j.spmi.2009.10.015 10.1016/j.spmi.2015.01.016 10.1016/j.chemphys.2014.04.014 10.1016/j.physe.2014.02.017 10.1016/j.physe.2004.11.002 10.1016/j.ssc.2011.01.013 10.1016/j.spmi.2009.12.002 10.1016/j.physe.2014.09.021 |
ContentType | Journal Article |
Copyright | 2015 Elsevier B.V. |
Copyright_xml | – notice: 2015 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.chemphys.2015.10.014 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EndPage | 158 |
ExternalDocumentID | 10_1016_j_chemphys_2015_10_014 S0301010415003377 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M36 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SPD SSK SSM SSQ SSZ T5K WH7 YK3 ZMT ~G- 53G 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FGOYB HMU HMV HX~ HZ~ NDZJH R2- SCB SCH SEW SPG SSH VOH WUQ ZY4 |
ID | FETCH-LOGICAL-c312t-18becdbbd1165b94b9f6dca36e2b27a4b76437eb511e3d6d3f21d6c079e2adaa3 |
IEDL.DBID | .~1 |
ISSN | 0301-0104 |
IngestDate | Thu Apr 24 22:59:22 EDT 2025 Tue Jul 01 01:53:12 EDT 2025 Fri Feb 23 02:30:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gaussian white noise Quantum dot Total optical absorption coefficient Impurity Noise strength |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c312t-18becdbbd1165b94b9f6dca36e2b27a4b76437eb511e3d6d3f21d6c079e2adaa3 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_chemphys_2015_10_014 crossref_primary_10_1016_j_chemphys_2015_10_014 elsevier_sciencedirect_doi_10_1016_j_chemphys_2015_10_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-16 |
PublicationDateYYYYMMDD | 2015-12-16 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-16 day: 16 |
PublicationDecade | 2010 |
PublicationTitle | Chemical physics |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Özmen, Yakar, Çakir, Atav (b0025) 2009; 282 Kirak, Yilmaz, Şahin, Gençasian (b0060) 2011; 109 Xiao (b0240) 1999; 86 Kasapoglu, Sökmen (b0245) 2005; 27 Ganguly, Ghosh (b0290) 2014; 438 Ganguly, Ghosh (b0300) 2015; 252 Hazra, Ghosh, Bhattacharyya (b0160) 2007; 333 Chen, Xie, Liang (b0115) 2013; 139 Şahin (b0320) 2009; 106 Ungan, Yesilgul, Kasapoglu, Sari, Sökmen (b0075) 2012; 132 Xie (b0100) 2008; 372 Yilmaz, Şahin (b0010) 2010; 247 Xie (b0155) 2012; 405 Kumar, Peter, Lee (b0045) 2012; 51 Ozturk, Sökmen (b0255) 2010; 48 Çakir, Yakar, Özmen (b0030) 2012; 132 Rezaei, Vahdani, Vaseghi (b0070) 2011; 11 Ganguly, Ghosh (b0295) 2014; 115 Rezaei, Vaseghi, Taghizadeh, Vahdani, Karimi (b0140) 2010; 48 Yuan, Xie, He (b0110) 2009; 41 Xie (b0165) 2012; 408 Xiao, Zhu, He (b0235) 1996; 79 Niculescu (b0085) 2011; 284 Niculescu, Burileanu, Radu, Lupaşcu (b0090) 2011; 131 Çakir, Yakar, Özmen, Özgür Şahin (b0035) 2010; 47 Sadeghi (b0215) 2011; 50 He, Xie (b0230) 2010; 47 Zeng, Garoufalis, Terzis, Baskoutas (b0040) 2013; 114 Tiutiunnyk, Tulupenko, Mora-Ramos, Kasapoglu, Ungan, Sari, Sökmen, Duque (b0050) 2014; 60 Ünlu, Karabulut, Şafak (b0120) 2006; 33 Ungan, Mertínez-Orozco, Restrepo, Mora-Ramos, Kasapoglu, Duque (b0180) 2015; 81 Zhang, Guo, Chen, Wang, Kang (b0285) 2010; 47 Xie (b0095) 2008; 403 Liu, Guo, Hassanabadi, Lu (b0280) 2012; 407 Martínez-Orozco, Mora-Ramos, Duque (b0135) 2014; 452 Kasapoglu, Ungan, Sari, Sökmen, Mora-Ramos, Duque (b0210) 2014; 73 Duque, Mora-Ramos, Kasapoglu, Ungan, Yesilgul, Şakiroğlu, Sari, Sökmen (b0080) 2013; 143 Lien, Trinh (b0200) 2001; 13 Hassanabadi, Liu, Lu (b0185) 2012; 152 Gharaati, Khordad (b0305) 2010; 48 Karimi, Rezaei (b0260) 2011; 406 Yesilgul, Ungan, Kasapoglu, Sari, Sökmen (b0315) 2011; 50 Karabulut (b0170) 2010; 256 Xie, Xie (b0220) 2009; 404 Yakar, Çakir (b0020) 2010; 283 Khordad (b0310) 2013; 54 Lu, Xie (b0275) 2011; 50 Şakiroğlu, Ungan, Yesilgul, Mora-Ramos, Duque, Kasapoglu, Sari, Sökmen (b0175) 2012; 376 Karabulut, Baskoutas (b0125) 2008; 103 Narayanan, John (b0065) 2012; 51 Vahdani, Rezaei (b0130) 2009; 373 Baskoutas, Garoufalis, Terzis (b0195) 2011; 84 Liu, Xu (b0105) 2008; 372 Xie (b0270) 2011; 151 Ta¸s, Şahin (b0005) 2012; 112 Xie (b0190) 2010; 405 Liu, Guo, Wang (b0265) 2012; 407 Kasapoglu, Sari, Sökmen (b0250) 2001; 29 Baskoutas, Paspalakis, Terzis (b0225) 2007; 19 Murillo, Porras-Montenegro (b0205) 2000; 220 Khordad, Bahramiyan (b0055) 2015; 66 Karabulut, Atav, Şafak, Tomak (b0015) 2007; 55 Keshavarz, Karimi (b0150) 2010; 374 Wang, Guo (b0145) 2005; 28 Vahdani (10.1016/j.chemphys.2015.10.014_b0130) 2009; 373 Yakar (10.1016/j.chemphys.2015.10.014_b0020) 2010; 283 Khordad (10.1016/j.chemphys.2015.10.014_b0310) 2013; 54 Yuan (10.1016/j.chemphys.2015.10.014_b0110) 2009; 41 Kasapoglu (10.1016/j.chemphys.2015.10.014_b0245) 2005; 27 Rezaei (10.1016/j.chemphys.2015.10.014_b0070) 2011; 11 Zeng (10.1016/j.chemphys.2015.10.014_b0040) 2013; 114 Chen (10.1016/j.chemphys.2015.10.014_b0115) 2013; 139 Rezaei (10.1016/j.chemphys.2015.10.014_b0140) 2010; 48 Xiao (10.1016/j.chemphys.2015.10.014_b0235) 1996; 79 Ganguly (10.1016/j.chemphys.2015.10.014_b0295) 2014; 115 Khordad (10.1016/j.chemphys.2015.10.014_b0055) 2015; 66 Zhang (10.1016/j.chemphys.2015.10.014_b0285) 2010; 47 Xie (10.1016/j.chemphys.2015.10.014_b0165) 2012; 408 Kasapoglu (10.1016/j.chemphys.2015.10.014_b0250) 2001; 29 Çakir (10.1016/j.chemphys.2015.10.014_b0035) 2010; 47 Lien (10.1016/j.chemphys.2015.10.014_b0200) 2001; 13 Lu (10.1016/j.chemphys.2015.10.014_b0275) 2011; 50 Xie (10.1016/j.chemphys.2015.10.014_b0155) 2012; 405 Karimi (10.1016/j.chemphys.2015.10.014_b0260) 2011; 406 Özmen (10.1016/j.chemphys.2015.10.014_b0025) 2009; 282 Baskoutas (10.1016/j.chemphys.2015.10.014_b0225) 2007; 19 Ozturk (10.1016/j.chemphys.2015.10.014_b0255) 2010; 48 Niculescu (10.1016/j.chemphys.2015.10.014_b0085) 2011; 284 Martínez-Orozco (10.1016/j.chemphys.2015.10.014_b0135) 2014; 452 Karabulut (10.1016/j.chemphys.2015.10.014_b0015) 2007; 55 Yesilgul (10.1016/j.chemphys.2015.10.014_b0315) 2011; 50 Hassanabadi (10.1016/j.chemphys.2015.10.014_b0185) 2012; 152 Liu (10.1016/j.chemphys.2015.10.014_b0265) 2012; 407 Şakiroğlu (10.1016/j.chemphys.2015.10.014_b0175) 2012; 376 Gharaati (10.1016/j.chemphys.2015.10.014_b0305) 2010; 48 Karabulut (10.1016/j.chemphys.2015.10.014_b0125) 2008; 103 Sadeghi (10.1016/j.chemphys.2015.10.014_b0215) 2011; 50 Xie (10.1016/j.chemphys.2015.10.014_b0100) 2008; 372 Kumar (10.1016/j.chemphys.2015.10.014_b0045) 2012; 51 Xie (10.1016/j.chemphys.2015.10.014_b0095) 2008; 403 He (10.1016/j.chemphys.2015.10.014_b0230) 2010; 47 Şahin (10.1016/j.chemphys.2015.10.014_b0320) 2009; 106 Murillo (10.1016/j.chemphys.2015.10.014_b0205) 2000; 220 Kasapoglu (10.1016/j.chemphys.2015.10.014_b0210) 2014; 73 Keshavarz (10.1016/j.chemphys.2015.10.014_b0150) 2010; 374 Liu (10.1016/j.chemphys.2015.10.014_b0105) 2008; 372 Xie (10.1016/j.chemphys.2015.10.014_b0220) 2009; 404 Wang (10.1016/j.chemphys.2015.10.014_b0145) 2005; 28 Hazra (10.1016/j.chemphys.2015.10.014_b0160) 2007; 333 Ungan (10.1016/j.chemphys.2015.10.014_b0180) 2015; 81 Tiutiunnyk (10.1016/j.chemphys.2015.10.014_b0050) 2014; 60 Ganguly (10.1016/j.chemphys.2015.10.014_b0290) 2014; 438 Ta¸s (10.1016/j.chemphys.2015.10.014_b0005) 2012; 112 Xie (10.1016/j.chemphys.2015.10.014_b0270) 2011; 151 Baskoutas (10.1016/j.chemphys.2015.10.014_b0195) 2011; 84 Ünlu (10.1016/j.chemphys.2015.10.014_b0120) 2006; 33 Xie (10.1016/j.chemphys.2015.10.014_b0190) 2010; 405 Karabulut (10.1016/j.chemphys.2015.10.014_b0170) 2010; 256 Xiao (10.1016/j.chemphys.2015.10.014_b0240) 1999; 86 Kirak (10.1016/j.chemphys.2015.10.014_b0060) 2011; 109 Duque (10.1016/j.chemphys.2015.10.014_b0080) 2013; 143 Yilmaz (10.1016/j.chemphys.2015.10.014_b0010) 2010; 247 Ganguly (10.1016/j.chemphys.2015.10.014_b0300) 2015; 252 Çakir (10.1016/j.chemphys.2015.10.014_b0030) 2012; 132 Liu (10.1016/j.chemphys.2015.10.014_b0280) 2012; 407 Ungan (10.1016/j.chemphys.2015.10.014_b0075) 2012; 132 Niculescu (10.1016/j.chemphys.2015.10.014_b0090) 2011; 131 Narayanan (10.1016/j.chemphys.2015.10.014_b0065) 2012; 51 |
References_xml | – volume: 106 start-page: 8 year: 2009 ident: b0320 publication-title: J. Appl. Phys. – volume: 51 start-page: 184 year: 2012 ident: b0045 publication-title: Superlattices Microstruct. – volume: 84 start-page: 241 year: 2011 ident: b0195 publication-title: Eur. Phys. J. B – volume: 139 start-page: 64 year: 2013 ident: b0115 publication-title: J. Lumin. – volume: 47 start-page: 266 year: 2010 ident: b0230 publication-title: Superlattices Microstruct. – volume: 405 start-page: 3436 year: 2010 ident: b0190 publication-title: Physica B – volume: 132 start-page: 1627 year: 2012 ident: b0075 publication-title: J. Lumin. – volume: 405 start-page: 22 year: 2012 ident: b0155 publication-title: Chem. Phys. – volume: 13 start-page: 2563 year: 2001 ident: b0200 publication-title: J. Phys. Cond. Mater. – volume: 438 start-page: 75 year: 2014 ident: b0290 publication-title: Chem. Phys. – volume: 408 start-page: 69 year: 2012 ident: b0165 publication-title: Chem. Phys. – volume: 131 start-page: 1113 year: 2011 ident: b0090 publication-title: J. Lumin. – volume: 86 start-page: 4509 year: 1999 ident: b0240 publication-title: J. Appl. Phys. – volume: 115 start-page: 10 year: 2014 ident: b0295 publication-title: J. Appl. Phys. – volume: 132 start-page: 2659 year: 2012 ident: b0030 publication-title: J. Lumin. – volume: 79 start-page: 9181 year: 1996 ident: b0235 publication-title: J. Appl. Phys. – volume: 403 start-page: 4319 year: 2008 ident: b0095 publication-title: Physica B – volume: 374 start-page: 2675 year: 2010 ident: b0150 publication-title: Phys. Lett. A – volume: 151 start-page: 545 year: 2011 ident: b0270 publication-title: Solid State Commun. – volume: 282 start-page: 3999 year: 2009 ident: b0025 publication-title: Optics Commun. – volume: 372 start-page: 5498 year: 2008 ident: b0100 publication-title: Phys. Lett. A – volume: 256 start-page: 7570 year: 2010 ident: b0170 publication-title: Appl. Surf. Sci. – volume: 283 start-page: 1795 year: 2010 ident: b0020 publication-title: Optics Commun. – volume: 407 start-page: 2334 year: 2012 ident: b0265 publication-title: Physica B – volume: 407 start-page: 3676 year: 2012 ident: b0280 publication-title: Physica B – volume: 103 start-page: 5 year: 2008 ident: b0125 publication-title: J. Appl. Phys. – volume: 452 start-page: 82 year: 2014 ident: b0135 publication-title: Physica B – volume: 33 start-page: 319 year: 2006 ident: b0120 publication-title: Physica E – volume: 376 start-page: 1875 year: 2012 ident: b0175 publication-title: Physics Letters A – volume: 247 start-page: 371 year: 2010 ident: b0010 publication-title: Phys. Status Solidi B – volume: 373 start-page: 3079 year: 2009 ident: b0130 publication-title: Phys. Lett. A – volume: 28 start-page: 14 year: 2005 ident: b0145 publication-title: Physica E – volume: 220 start-page: 187 year: 2000 ident: b0205 publication-title: Phys. Status Solidi B – volume: 47 start-page: 556 year: 2010 ident: b0035 publication-title: Superlattices Microstruct. – volume: 114 start-page: 023510 year: 2013 ident: b0040 publication-title: J. Appl. Phys. – volume: 48 start-page: 450 year: 2010 ident: b0140 publication-title: Superlattices Microstruct. – volume: 51 start-page: 486 year: 2012 ident: b0065 publication-title: Superlattices Microstruct – volume: 284 start-page: 3298 year: 2011 ident: b0085 publication-title: Optics Commun. – volume: 47 start-page: 325 year: 2010 ident: b0285 publication-title: Superlattices Microstruct. – volume: 252 start-page: 289 year: 2015 ident: b0300 publication-title: Physica Status Solidi B – volume: 50 start-page: 400 year: 2011 ident: b0315 publication-title: Superlattices Microstruct. – volume: 48 start-page: 312 year: 2010 ident: b0255 publication-title: Superlattices Microstruct. – volume: 41 start-page: 779 year: 2009 ident: b0110 publication-title: Physica E – volume: 372 start-page: 888 year: 2008 ident: b0105 publication-title: Phys. Lett. A – volume: 60 start-page: 127 year: 2014 ident: b0050 publication-title: Physica E – volume: 109 start-page: 094309 year: 2011 ident: b0060 publication-title: J. Appl. Phys. – volume: 73 start-page: 171 year: 2014 ident: b0210 publication-title: Superlattices Microstruct. – volume: 404 start-page: 1625 year: 2009 ident: b0220 publication-title: Physica B – volume: 152 start-page: 1761 year: 2012 ident: b0185 publication-title: Solid State Commun. – volume: 29 start-page: 25 year: 2001 ident: b0250 publication-title: Superlattices Microstruct. – volume: 406 start-page: 4423 year: 2011 ident: b0260 publication-title: Physica B – volume: 48 start-page: 276 year: 2010 ident: b0305 publication-title: Superlattices Microstruct. – volume: 112 start-page: 053717 year: 2012 ident: b0005 publication-title: J. Appl. Phys. – volume: 333 start-page: 18 year: 2007 ident: b0160 publication-title: Chem. Phys. – volume: 11 start-page: 176 year: 2011 ident: b0070 publication-title: Current Appl. Phys. – volume: 143 start-page: 304 year: 2013 ident: b0080 publication-title: J. Lumin. – volume: 55 start-page: 283 year: 2007 ident: b0015 publication-title: Eur. Phys. J.B – volume: 66 start-page: 107 year: 2015 ident: b0055 publication-title: Physica E – volume: 27 start-page: 198 year: 2005 ident: b0245 publication-title: Physica E – volume: 81 start-page: 26 year: 2015 ident: b0180 publication-title: Superlattices Microstruct. – volume: 50 start-page: 331 year: 2011 ident: b0215 publication-title: Superlattices Microstruct. – volume: 19 start-page: 9 year: 2007 ident: b0225 publication-title: J. Phys:Cond. Mat. – volume: 50 start-page: 40 year: 2011 ident: b0275 publication-title: Superlattices Microstruct. – volume: 54 start-page: 7 year: 2013 ident: b0310 publication-title: Superlattices Microstruct. – volume: 48 start-page: 276 year: 2010 ident: 10.1016/j.chemphys.2015.10.014_b0305 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2010.06.014 – volume: 284 start-page: 3298 year: 2011 ident: 10.1016/j.chemphys.2015.10.014_b0085 publication-title: Optics Commun. doi: 10.1016/j.optcom.2011.02.071 – volume: 109 start-page: 094309 year: 2011 ident: 10.1016/j.chemphys.2015.10.014_b0060 publication-title: J. Appl. Phys. doi: 10.1063/1.3582137 – volume: 103 start-page: 5 year: 2008 ident: 10.1016/j.chemphys.2015.10.014_b0125 publication-title: J. Appl. Phys. – volume: 48 start-page: 312 year: 2010 ident: 10.1016/j.chemphys.2015.10.014_b0255 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2010.06.015 – volume: 50 start-page: 331 year: 2011 ident: 10.1016/j.chemphys.2015.10.014_b0215 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2011.07.011 – volume: 48 start-page: 450 year: 2010 ident: 10.1016/j.chemphys.2015.10.014_b0140 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2010.08.009 – volume: 131 start-page: 1113 year: 2011 ident: 10.1016/j.chemphys.2015.10.014_b0090 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2011.02.028 – volume: 51 start-page: 486 year: 2012 ident: 10.1016/j.chemphys.2015.10.014_b0065 publication-title: Superlattices Microstruct doi: 10.1016/j.spmi.2012.01.012 – volume: 47 start-page: 325 year: 2010 ident: 10.1016/j.chemphys.2015.10.014_b0285 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2009.12.004 – volume: 139 start-page: 64 year: 2013 ident: 10.1016/j.chemphys.2015.10.014_b0115 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2013.02.030 – volume: 404 start-page: 1625 year: 2009 ident: 10.1016/j.chemphys.2015.10.014_b0220 publication-title: Physica B doi: 10.1016/j.physb.2009.01.037 – volume: 152 start-page: 1761 year: 2012 ident: 10.1016/j.chemphys.2015.10.014_b0185 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2012.05.023 – volume: 406 start-page: 4423 year: 2011 ident: 10.1016/j.chemphys.2015.10.014_b0260 publication-title: Physica B doi: 10.1016/j.physb.2011.08.105 – volume: 403 start-page: 4319 year: 2008 ident: 10.1016/j.chemphys.2015.10.014_b0095 publication-title: Physica B doi: 10.1016/j.physb.2008.09.021 – volume: 256 start-page: 7570 year: 2010 ident: 10.1016/j.chemphys.2015.10.014_b0170 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.06.004 – volume: 143 start-page: 304 year: 2013 ident: 10.1016/j.chemphys.2015.10.014_b0080 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2013.04.048 – volume: 132 start-page: 2659 year: 2012 ident: 10.1016/j.chemphys.2015.10.014_b0030 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2012.03.065 – volume: 50 start-page: 40 year: 2011 ident: 10.1016/j.chemphys.2015.10.014_b0275 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2011.04.007 – volume: 115 start-page: 10 year: 2014 ident: 10.1016/j.chemphys.2015.10.014_b0295 publication-title: J. Appl. Phys. doi: 10.1063/1.4875377 – volume: 282 start-page: 3999 year: 2009 ident: 10.1016/j.chemphys.2015.10.014_b0025 publication-title: Optics Commun. doi: 10.1016/j.optcom.2009.06.043 – volume: 405 start-page: 3436 year: 2010 ident: 10.1016/j.chemphys.2015.10.014_b0190 publication-title: Physica B doi: 10.1016/j.physb.2010.05.019 – volume: 220 start-page: 187 year: 2000 ident: 10.1016/j.chemphys.2015.10.014_b0205 publication-title: Phys. Status Solidi B doi: 10.1002/1521-3951(200007)220:1<187::AID-PSSB187>3.0.CO;2-D – volume: 29 start-page: 25 year: 2001 ident: 10.1016/j.chemphys.2015.10.014_b0250 publication-title: Superlattices Microstruct. doi: 10.1006/spmi.2000.0907 – volume: 51 start-page: 184 year: 2012 ident: 10.1016/j.chemphys.2015.10.014_b0045 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2011.11.012 – volume: 452 start-page: 82 year: 2014 ident: 10.1016/j.chemphys.2015.10.014_b0135 publication-title: Physica B doi: 10.1016/j.physb.2014.07.003 – volume: 84 start-page: 241 year: 2011 ident: 10.1016/j.chemphys.2015.10.014_b0195 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2011-20470-9 – volume: 112 start-page: 053717 year: 2012 ident: 10.1016/j.chemphys.2015.10.014_b0005 publication-title: J. Appl. Phys. doi: 10.1063/1.4751483 – volume: 372 start-page: 888 year: 2008 ident: 10.1016/j.chemphys.2015.10.014_b0105 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2007.08.046 – volume: 372 start-page: 5498 year: 2008 ident: 10.1016/j.chemphys.2015.10.014_b0100 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2008.06.059 – volume: 73 start-page: 171 year: 2014 ident: 10.1016/j.chemphys.2015.10.014_b0210 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2014.05.023 – volume: 13 start-page: 2563 year: 2001 ident: 10.1016/j.chemphys.2015.10.014_b0200 publication-title: J. Phys. Cond. Mater. doi: 10.1088/0953-8984/13/11/312 – volume: 50 start-page: 400 year: 2011 ident: 10.1016/j.chemphys.2015.10.014_b0315 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2011.08.002 – volume: 333 start-page: 18 year: 2007 ident: 10.1016/j.chemphys.2015.10.014_b0160 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2006.12.014 – volume: 55 start-page: 283 year: 2007 ident: 10.1016/j.chemphys.2015.10.014_b0015 publication-title: Eur. Phys. J.B doi: 10.1140/epjb/e2007-00055-1 – volume: 19 start-page: 9 year: 2007 ident: 10.1016/j.chemphys.2015.10.014_b0225 publication-title: J. Phys:Cond. Mat. – volume: 54 start-page: 7 year: 2013 ident: 10.1016/j.chemphys.2015.10.014_b0310 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2012.10.014 – volume: 11 start-page: 176 year: 2011 ident: 10.1016/j.chemphys.2015.10.014_b0070 publication-title: Current Appl. Phys. doi: 10.1016/j.cap.2010.07.002 – volume: 373 start-page: 3079 year: 2009 ident: 10.1016/j.chemphys.2015.10.014_b0130 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2009.06.042 – volume: 247 start-page: 371 year: 2010 ident: 10.1016/j.chemphys.2015.10.014_b0010 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.200945491 – volume: 86 start-page: 4509 year: 1999 ident: 10.1016/j.chemphys.2015.10.014_b0240 publication-title: J. Appl. Phys. doi: 10.1063/1.371394 – volume: 28 start-page: 14 year: 2005 ident: 10.1016/j.chemphys.2015.10.014_b0145 publication-title: Physica E doi: 10.1016/j.physe.2005.01.018 – volume: 114 start-page: 023510 year: 2013 ident: 10.1016/j.chemphys.2015.10.014_b0040 publication-title: J. Appl. Phys. doi: 10.1063/1.4813094 – volume: 376 start-page: 1875 year: 2012 ident: 10.1016/j.chemphys.2015.10.014_b0175 publication-title: Physics Letters A doi: 10.1016/j.physleta.2012.04.028 – volume: 132 start-page: 1627 year: 2012 ident: 10.1016/j.chemphys.2015.10.014_b0075 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2012.02.033 – volume: 283 start-page: 1795 year: 2010 ident: 10.1016/j.chemphys.2015.10.014_b0020 publication-title: Optics Commun. doi: 10.1016/j.optcom.2009.12.027 – volume: 33 start-page: 319 year: 2006 ident: 10.1016/j.chemphys.2015.10.014_b0120 publication-title: Physica E doi: 10.1016/j.physe.2006.03.163 – volume: 252 start-page: 289 year: 2015 ident: 10.1016/j.chemphys.2015.10.014_b0300 publication-title: Physica Status Solidi B doi: 10.1002/pssb.201451374 – volume: 374 start-page: 2675 year: 2010 ident: 10.1016/j.chemphys.2015.10.014_b0150 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2010.04.049 – volume: 405 start-page: 22 year: 2012 ident: 10.1016/j.chemphys.2015.10.014_b0155 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2012.06.002 – volume: 407 start-page: 3676 year: 2012 ident: 10.1016/j.chemphys.2015.10.014_b0280 publication-title: Physica B doi: 10.1016/j.physb.2012.05.049 – volume: 408 start-page: 69 year: 2012 ident: 10.1016/j.chemphys.2015.10.014_b0165 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2012.09.023 – volume: 407 start-page: 2334 year: 2012 ident: 10.1016/j.chemphys.2015.10.014_b0265 publication-title: Physica B doi: 10.1016/j.physb.2012.03.030 – volume: 79 start-page: 9181 year: 1996 ident: 10.1016/j.chemphys.2015.10.014_b0235 publication-title: J. Appl. Phys. doi: 10.1063/1.362590 – volume: 41 start-page: 779 year: 2009 ident: 10.1016/j.chemphys.2015.10.014_b0110 publication-title: Physica E doi: 10.1016/j.physe.2008.12.012 – volume: 106 start-page: 8 year: 2009 ident: 10.1016/j.chemphys.2015.10.014_b0320 publication-title: J. Appl. Phys. – volume: 47 start-page: 266 year: 2010 ident: 10.1016/j.chemphys.2015.10.014_b0230 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2009.10.015 – volume: 81 start-page: 26 year: 2015 ident: 10.1016/j.chemphys.2015.10.014_b0180 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2015.01.016 – volume: 438 start-page: 75 year: 2014 ident: 10.1016/j.chemphys.2015.10.014_b0290 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2014.04.014 – volume: 60 start-page: 127 year: 2014 ident: 10.1016/j.chemphys.2015.10.014_b0050 publication-title: Physica E doi: 10.1016/j.physe.2014.02.017 – volume: 27 start-page: 198 year: 2005 ident: 10.1016/j.chemphys.2015.10.014_b0245 publication-title: Physica E doi: 10.1016/j.physe.2004.11.002 – volume: 151 start-page: 545 year: 2011 ident: 10.1016/j.chemphys.2015.10.014_b0270 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2011.01.013 – volume: 47 start-page: 556 year: 2010 ident: 10.1016/j.chemphys.2015.10.014_b0035 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2009.12.002 – volume: 66 start-page: 107 year: 2015 ident: 10.1016/j.chemphys.2015.10.014_b0055 publication-title: Physica E doi: 10.1016/j.physe.2014.09.021 |
SSID | ssj0005835 |
Score | 2.299201 |
Snippet | [Display omitted]
•Total optical absorption coefficient (TOAC) of impurity doped quantum dot is studied.•The dot is subject to Gaussian white noise.•TOAC is... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 149 |
SubjectTerms | Gaussian white noise Impurity Noise strength Quantum dot Total optical absorption coefficient |
Title | Analyzing total optical absorption coefficient of impurity doped quantum dots in presence of noise with special emphasis on electric field, magnetic field and confinement potential |
URI | https://dx.doi.org/10.1016/j.chemphys.2015.10.014 |
Volume | 463 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9RADB5VRQguCAqIUlr5wJHsJplJsnusVlQLiF6gUm_RPByUqpsJTfbCob-qP7D2JKkWCakHjjOK8xhb42-cz7YQHzMslM4widIUkQ4oJo50wbZM7onhR2pCL4Lv5_n6Qn29zC73xGrKhWFa5bj3D3t62K3Hmfm4mvO2ruc_GMzzaYIgTSxlwRnlShVs5bPbHZrHYmiyKcOxOVY7WcJXM1qXDUcQmOKVzZjllah_O6gdp3P2UrwY0SKcDi_0SuxhcyCeraYmbQfiaWBw2u61uAvlRf6QJ4LeE6IG34YwNWjT-ZuwMYD1GCpGkKMBX0G9aUPvOnC-RQe_t7TK2w2N-g7qBtqQmWSRL2183SFw0Ba6oWM98Dfpru6Abjw006ktBELcJ9joXw1nRw5j0I2jZzcVIVoORkLreyYp6es34uLs88_VOhpbMkRWJmkfJQvSuTPGcdUes1RmWeXOapkjKbXQyhT8IxANwTiULneyShOX27hYYqqd1vKt2G98g-8ELLTJNRauqiypLdZGVolViXMEClNr8FBkkx5KO9Yr57YZ1-VETLsqJ_2VrD-eJ_0divmDXDtU7HhUYjmpufzL9kpyK4_Ivv8P2SPxnEdMjknyD2K_v9niMUGc3pwEGz4RT06_fFuf3wMGmQJ2 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbooopeKkpbQR90Dj02bBI78e4RrYqWAnspSNwiv1IFsXFKspf-rv7AzjhJSyUkDhzjZPLwWDOfJ9_MMPY5c1KozCVRmjqHGxQdR0rSWkb3RPAj1aEXwcUqX16Jb9fZ9RZbjLkwRKscbH9v04O1Hkamw2xOm6qaficwT7sJhDQx51I-Y9tUnSqbsO3j07Pl6h_TY9b32eRh5xyLe4nCN0c4NWsKIhDLKzsiolciHvZR9_zOyS57OQBGOO7f6RXbcvUe21mMfdr22PNA4jTta_Y7VBj5hc4IOo-gGnwTItWgdOvvgm0A410oGoG-BnwJ1boJ7evA-sZZ-LnBid6s8ahroaqhCclJxtGlta9aBxS3hbZvWg_0TaqtWsAb9_10KgOBE_cF1upHTQmS_TGo2uKz6xJBLcUjofEd8ZTU7Rt2dfL1crGMhq4MkeFJ2kXJDNVutbZUuEfPhZ6XuTWK5w71KpXQkv4FOo1IznGbW16mic1NLOcuVVYp_pZNal-7fQYzpXPlpC1LI4SMleZlYkRiLeLC1Gh3wLJRD4UZSpZT54zbYuSm3RSj_grSH42j_g7Y9K9c0xfteFRiPqq5-G_5FehZHpF99wTZT2xneXlxXpyfrs7esxd0hrgySf6BTbq7jfuIiKfTh8OK_gPHfQUn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+total+optical+absorption+coefficient+of+impurity+doped+quantum+dots+in+presence+of+noise+with+special+emphasis+on+electric+field%2C+magnetic+field+and+confinement+potential&rft.jtitle=Chemical+physics&rft.au=Mandal%2C+Arkajit&rft.au=Sarkar%2C+Sucharita&rft.au=Ghosh%2C+Arghya+Pratim&rft.au=Ghosh%2C+Manas&rft.date=2015-12-16&rft.pub=Elsevier+B.V&rft.issn=0301-0104&rft.volume=463&rft.spage=149&rft.epage=158&rft_id=info:doi/10.1016%2Fj.chemphys.2015.10.014&rft.externalDocID=S0301010415003377 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-0104&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-0104&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-0104&client=summon |