Analyzing total optical absorption coefficient of impurity doped quantum dots in presence of noise with special emphasis on electric field, magnetic field and confinement potential

[Display omitted] •Total optical absorption coefficient (TOAC) of impurity doped quantum dot is studied.•The dot is subject to Gaussian white noise.•TOAC is affected by various important parameters.•Noise influences TOAC profiles noticeably.•Findings may have technological importance. We make an ext...

Full description

Saved in:
Bibliographic Details
Published inChemical physics Vol. 463; pp. 149 - 158
Main Authors Mandal, Arkajit, Sarkar, Sucharita, Ghosh, Arghya Pratim, Ghosh, Manas
Format Journal Article
LanguageEnglish
Published Elsevier B.V 16.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Total optical absorption coefficient (TOAC) of impurity doped quantum dot is studied.•The dot is subject to Gaussian white noise.•TOAC is affected by various important parameters.•Noise influences TOAC profiles noticeably.•Findings may have technological importance. We make an extensive investigation of total optical absorption coefficient (TOAC) of impurity doped quantum dots (QDs) in presence and absence of Gaussian white noise. The TOAC profiles have been monitored against incident photon energy with special emphasis on the roles played by the electric field, magnetic field, and the dot confinement potential. Presence of impurity also influences the TOAC profile. In general, presence of noise causes enhancement of TOAC over that of noise-free condition. However, the interplay between the noise and the quantities like electric field, magnetic field, confinement potential and impurity potential bring about rich subtleties in the TOAC profiles. The said subtleties are often manifested by the alterations in TOAC peak intensity, extent of TOAC peak bleaching, and value of saturation intensity. The findings reveal some technologically relevant aspects of TOAC for the doped QD systems, specially in presence of noise.
AbstractList [Display omitted] •Total optical absorption coefficient (TOAC) of impurity doped quantum dot is studied.•The dot is subject to Gaussian white noise.•TOAC is affected by various important parameters.•Noise influences TOAC profiles noticeably.•Findings may have technological importance. We make an extensive investigation of total optical absorption coefficient (TOAC) of impurity doped quantum dots (QDs) in presence and absence of Gaussian white noise. The TOAC profiles have been monitored against incident photon energy with special emphasis on the roles played by the electric field, magnetic field, and the dot confinement potential. Presence of impurity also influences the TOAC profile. In general, presence of noise causes enhancement of TOAC over that of noise-free condition. However, the interplay between the noise and the quantities like electric field, magnetic field, confinement potential and impurity potential bring about rich subtleties in the TOAC profiles. The said subtleties are often manifested by the alterations in TOAC peak intensity, extent of TOAC peak bleaching, and value of saturation intensity. The findings reveal some technologically relevant aspects of TOAC for the doped QD systems, specially in presence of noise.
Author Ghosh, Manas
Mandal, Arkajit
Sarkar, Sucharita
Ghosh, Arghya Pratim
Author_xml – sequence: 1
  givenname: Arkajit
  surname: Mandal
  fullname: Mandal, Arkajit
– sequence: 2
  givenname: Sucharita
  surname: Sarkar
  fullname: Sarkar, Sucharita
– sequence: 3
  givenname: Arghya Pratim
  surname: Ghosh
  fullname: Ghosh, Arghya Pratim
– sequence: 4
  givenname: Manas
  surname: Ghosh
  fullname: Ghosh, Manas
  email: pcmg77@rediffmail.com
BookMark eNqFkMtOQjEQhrvAREBfwfQBBNtzAxIXEuItIXGj65NepjDknPbYFg0-lw9oT9CNG1b_zGT-f9pvRAbWWSDkirMpZ7y62U3VFtpuewjTjPEyDaeMFwMyZDnjE8ZZcU5GIewYY-U8L4fke2lFc_hCu6HRRdFQ10VUSYUMzqfaWaocGIMKwUbqDMW223uMB6pdB5q-74WN-zZ1MVC0tPMQwCroV63DAPQT45aGDhSm3P51ImCgKRgaUNGjogah0de0FRsL8a-nwup02xq00Pa3OxeTpJALcmZEE-DyV8fk7eH-dfU0Wb88Pq-W64nKeRYnfC5BaSk151UpF4VcmEorkVeQyWwmCjmrinwGsuQccl3p3GRcV4rNFpAJLUQ-JrfHXOVdCB5MrTCKnkn0Apuas7qnXu_qP-p1T72fJ-rJXv2zdx5b4Q-njXdHI6TPfSD4OvT0FWj0iVitHZ6K-AETE6xi
CitedBy_id crossref_primary_10_1016_j_physb_2016_12_031
crossref_primary_10_1140_epjp_s13360_024_05064_8
crossref_primary_10_1016_j_physb_2023_414818
crossref_primary_10_1016_j_physe_2016_03_033
crossref_primary_10_3103_S1068337219020075
crossref_primary_10_1142_S0217979219500097
crossref_primary_10_1142_S0217979219502254
crossref_primary_10_1016_j_physe_2021_114919
crossref_primary_10_1080_14786435_2019_1619949
crossref_primary_10_29002_asujse_302748
crossref_primary_10_1002_pssb_202300094
crossref_primary_10_1016_j_optcom_2021_127266
crossref_primary_10_1016_j_chemphys_2016_09_001
crossref_primary_10_1016_j_cplett_2018_08_010
crossref_primary_10_1016_j_chemphys_2017_06_004
crossref_primary_10_1016_j_cplett_2017_06_064
crossref_primary_10_1140_epjp_s13360_021_01955_2
crossref_primary_10_1140_epjp_s13360_022_03362_7
crossref_primary_10_1016_j_physb_2024_416769
crossref_primary_10_1088_1674_1056_ab9284
crossref_primary_10_1016_j_chemphys_2016_05_010
crossref_primary_10_3390_ma11050668
crossref_primary_10_1016_j_physb_2017_01_018
crossref_primary_10_1155_2019_3478506
crossref_primary_10_1016_j_spmi_2017_06_019
crossref_primary_10_1016_j_chemphys_2016_10_012
crossref_primary_10_1088_1402_4896_ad3150
crossref_primary_10_1016_j_physb_2022_414379
crossref_primary_10_1016_j_chemphys_2018_07_049
crossref_primary_10_1016_j_physb_2022_414575
crossref_primary_10_1016_j_chemphys_2016_06_010
crossref_primary_10_1088_1555_6611_ab0a64
Cites_doi 10.1016/j.spmi.2010.06.014
10.1016/j.optcom.2011.02.071
10.1063/1.3582137
10.1016/j.spmi.2010.06.015
10.1016/j.spmi.2011.07.011
10.1016/j.spmi.2010.08.009
10.1016/j.jlumin.2011.02.028
10.1016/j.spmi.2012.01.012
10.1016/j.spmi.2009.12.004
10.1016/j.jlumin.2013.02.030
10.1016/j.physb.2009.01.037
10.1016/j.ssc.2012.05.023
10.1016/j.physb.2011.08.105
10.1016/j.physb.2008.09.021
10.1016/j.apsusc.2010.06.004
10.1016/j.jlumin.2013.04.048
10.1016/j.jlumin.2012.03.065
10.1016/j.spmi.2011.04.007
10.1063/1.4875377
10.1016/j.optcom.2009.06.043
10.1016/j.physb.2010.05.019
10.1002/1521-3951(200007)220:1<187::AID-PSSB187>3.0.CO;2-D
10.1006/spmi.2000.0907
10.1016/j.spmi.2011.11.012
10.1016/j.physb.2014.07.003
10.1140/epjb/e2011-20470-9
10.1063/1.4751483
10.1016/j.physleta.2007.08.046
10.1016/j.physleta.2008.06.059
10.1016/j.spmi.2014.05.023
10.1088/0953-8984/13/11/312
10.1016/j.spmi.2011.08.002
10.1016/j.chemphys.2006.12.014
10.1140/epjb/e2007-00055-1
10.1016/j.spmi.2012.10.014
10.1016/j.cap.2010.07.002
10.1016/j.physleta.2009.06.042
10.1002/pssb.200945491
10.1063/1.371394
10.1016/j.physe.2005.01.018
10.1063/1.4813094
10.1016/j.physleta.2012.04.028
10.1016/j.jlumin.2012.02.033
10.1016/j.optcom.2009.12.027
10.1016/j.physe.2006.03.163
10.1002/pssb.201451374
10.1016/j.physleta.2010.04.049
10.1016/j.chemphys.2012.06.002
10.1016/j.physb.2012.05.049
10.1016/j.chemphys.2012.09.023
10.1016/j.physb.2012.03.030
10.1063/1.362590
10.1016/j.physe.2008.12.012
10.1016/j.spmi.2009.10.015
10.1016/j.spmi.2015.01.016
10.1016/j.chemphys.2014.04.014
10.1016/j.physe.2014.02.017
10.1016/j.physe.2004.11.002
10.1016/j.ssc.2011.01.013
10.1016/j.spmi.2009.12.002
10.1016/j.physe.2014.09.021
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.chemphys.2015.10.014
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EndPage 158
ExternalDocumentID 10_1016_j_chemphys_2015_10_014
S0301010415003377
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M36
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSM
SSQ
SSZ
T5K
WH7
YK3
ZMT
~G-
53G
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FGOYB
HMU
HMV
HX~
HZ~
NDZJH
R2-
SCB
SCH
SEW
SPG
SSH
VOH
WUQ
ZY4
ID FETCH-LOGICAL-c312t-18becdbbd1165b94b9f6dca36e2b27a4b76437eb511e3d6d3f21d6c079e2adaa3
IEDL.DBID .~1
ISSN 0301-0104
IngestDate Thu Apr 24 22:59:22 EDT 2025
Tue Jul 01 01:53:12 EDT 2025
Fri Feb 23 02:30:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gaussian white noise
Quantum dot
Total optical absorption coefficient
Impurity
Noise strength
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c312t-18becdbbd1165b94b9f6dca36e2b27a4b76437eb511e3d6d3f21d6c079e2adaa3
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_chemphys_2015_10_014
crossref_primary_10_1016_j_chemphys_2015_10_014
elsevier_sciencedirect_doi_10_1016_j_chemphys_2015_10_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-16
PublicationDateYYYYMMDD 2015-12-16
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-16
  day: 16
PublicationDecade 2010
PublicationTitle Chemical physics
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Özmen, Yakar, Çakir, Atav (b0025) 2009; 282
Kirak, Yilmaz, Şahin, Gençasian (b0060) 2011; 109
Xiao (b0240) 1999; 86
Kasapoglu, Sökmen (b0245) 2005; 27
Ganguly, Ghosh (b0290) 2014; 438
Ganguly, Ghosh (b0300) 2015; 252
Hazra, Ghosh, Bhattacharyya (b0160) 2007; 333
Chen, Xie, Liang (b0115) 2013; 139
Şahin (b0320) 2009; 106
Ungan, Yesilgul, Kasapoglu, Sari, Sökmen (b0075) 2012; 132
Xie (b0100) 2008; 372
Yilmaz, Şahin (b0010) 2010; 247
Xie (b0155) 2012; 405
Kumar, Peter, Lee (b0045) 2012; 51
Ozturk, Sökmen (b0255) 2010; 48
Çakir, Yakar, Özmen (b0030) 2012; 132
Rezaei, Vahdani, Vaseghi (b0070) 2011; 11
Ganguly, Ghosh (b0295) 2014; 115
Rezaei, Vaseghi, Taghizadeh, Vahdani, Karimi (b0140) 2010; 48
Yuan, Xie, He (b0110) 2009; 41
Xie (b0165) 2012; 408
Xiao, Zhu, He (b0235) 1996; 79
Niculescu (b0085) 2011; 284
Niculescu, Burileanu, Radu, Lupaşcu (b0090) 2011; 131
Çakir, Yakar, Özmen, Özgür Şahin (b0035) 2010; 47
Sadeghi (b0215) 2011; 50
He, Xie (b0230) 2010; 47
Zeng, Garoufalis, Terzis, Baskoutas (b0040) 2013; 114
Tiutiunnyk, Tulupenko, Mora-Ramos, Kasapoglu, Ungan, Sari, Sökmen, Duque (b0050) 2014; 60
Ünlu, Karabulut, Şafak (b0120) 2006; 33
Ungan, Mertínez-Orozco, Restrepo, Mora-Ramos, Kasapoglu, Duque (b0180) 2015; 81
Zhang, Guo, Chen, Wang, Kang (b0285) 2010; 47
Xie (b0095) 2008; 403
Liu, Guo, Hassanabadi, Lu (b0280) 2012; 407
Martínez-Orozco, Mora-Ramos, Duque (b0135) 2014; 452
Kasapoglu, Ungan, Sari, Sökmen, Mora-Ramos, Duque (b0210) 2014; 73
Duque, Mora-Ramos, Kasapoglu, Ungan, Yesilgul, Şakiroğlu, Sari, Sökmen (b0080) 2013; 143
Lien, Trinh (b0200) 2001; 13
Hassanabadi, Liu, Lu (b0185) 2012; 152
Gharaati, Khordad (b0305) 2010; 48
Karimi, Rezaei (b0260) 2011; 406
Yesilgul, Ungan, Kasapoglu, Sari, Sökmen (b0315) 2011; 50
Karabulut (b0170) 2010; 256
Xie, Xie (b0220) 2009; 404
Yakar, Çakir (b0020) 2010; 283
Khordad (b0310) 2013; 54
Lu, Xie (b0275) 2011; 50
Şakiroğlu, Ungan, Yesilgul, Mora-Ramos, Duque, Kasapoglu, Sari, Sökmen (b0175) 2012; 376
Karabulut, Baskoutas (b0125) 2008; 103
Narayanan, John (b0065) 2012; 51
Vahdani, Rezaei (b0130) 2009; 373
Baskoutas, Garoufalis, Terzis (b0195) 2011; 84
Liu, Xu (b0105) 2008; 372
Xie (b0270) 2011; 151
Ta¸s, Şahin (b0005) 2012; 112
Xie (b0190) 2010; 405
Liu, Guo, Wang (b0265) 2012; 407
Kasapoglu, Sari, Sökmen (b0250) 2001; 29
Baskoutas, Paspalakis, Terzis (b0225) 2007; 19
Murillo, Porras-Montenegro (b0205) 2000; 220
Khordad, Bahramiyan (b0055) 2015; 66
Karabulut, Atav, Şafak, Tomak (b0015) 2007; 55
Keshavarz, Karimi (b0150) 2010; 374
Wang, Guo (b0145) 2005; 28
Vahdani (10.1016/j.chemphys.2015.10.014_b0130) 2009; 373
Yakar (10.1016/j.chemphys.2015.10.014_b0020) 2010; 283
Khordad (10.1016/j.chemphys.2015.10.014_b0310) 2013; 54
Yuan (10.1016/j.chemphys.2015.10.014_b0110) 2009; 41
Kasapoglu (10.1016/j.chemphys.2015.10.014_b0245) 2005; 27
Rezaei (10.1016/j.chemphys.2015.10.014_b0070) 2011; 11
Zeng (10.1016/j.chemphys.2015.10.014_b0040) 2013; 114
Chen (10.1016/j.chemphys.2015.10.014_b0115) 2013; 139
Rezaei (10.1016/j.chemphys.2015.10.014_b0140) 2010; 48
Xiao (10.1016/j.chemphys.2015.10.014_b0235) 1996; 79
Ganguly (10.1016/j.chemphys.2015.10.014_b0295) 2014; 115
Khordad (10.1016/j.chemphys.2015.10.014_b0055) 2015; 66
Zhang (10.1016/j.chemphys.2015.10.014_b0285) 2010; 47
Xie (10.1016/j.chemphys.2015.10.014_b0165) 2012; 408
Kasapoglu (10.1016/j.chemphys.2015.10.014_b0250) 2001; 29
Çakir (10.1016/j.chemphys.2015.10.014_b0035) 2010; 47
Lien (10.1016/j.chemphys.2015.10.014_b0200) 2001; 13
Lu (10.1016/j.chemphys.2015.10.014_b0275) 2011; 50
Xie (10.1016/j.chemphys.2015.10.014_b0155) 2012; 405
Karimi (10.1016/j.chemphys.2015.10.014_b0260) 2011; 406
Özmen (10.1016/j.chemphys.2015.10.014_b0025) 2009; 282
Baskoutas (10.1016/j.chemphys.2015.10.014_b0225) 2007; 19
Ozturk (10.1016/j.chemphys.2015.10.014_b0255) 2010; 48
Niculescu (10.1016/j.chemphys.2015.10.014_b0085) 2011; 284
Martínez-Orozco (10.1016/j.chemphys.2015.10.014_b0135) 2014; 452
Karabulut (10.1016/j.chemphys.2015.10.014_b0015) 2007; 55
Yesilgul (10.1016/j.chemphys.2015.10.014_b0315) 2011; 50
Hassanabadi (10.1016/j.chemphys.2015.10.014_b0185) 2012; 152
Liu (10.1016/j.chemphys.2015.10.014_b0265) 2012; 407
Şakiroğlu (10.1016/j.chemphys.2015.10.014_b0175) 2012; 376
Gharaati (10.1016/j.chemphys.2015.10.014_b0305) 2010; 48
Karabulut (10.1016/j.chemphys.2015.10.014_b0125) 2008; 103
Sadeghi (10.1016/j.chemphys.2015.10.014_b0215) 2011; 50
Xie (10.1016/j.chemphys.2015.10.014_b0100) 2008; 372
Kumar (10.1016/j.chemphys.2015.10.014_b0045) 2012; 51
Xie (10.1016/j.chemphys.2015.10.014_b0095) 2008; 403
He (10.1016/j.chemphys.2015.10.014_b0230) 2010; 47
Şahin (10.1016/j.chemphys.2015.10.014_b0320) 2009; 106
Murillo (10.1016/j.chemphys.2015.10.014_b0205) 2000; 220
Kasapoglu (10.1016/j.chemphys.2015.10.014_b0210) 2014; 73
Keshavarz (10.1016/j.chemphys.2015.10.014_b0150) 2010; 374
Liu (10.1016/j.chemphys.2015.10.014_b0105) 2008; 372
Xie (10.1016/j.chemphys.2015.10.014_b0220) 2009; 404
Wang (10.1016/j.chemphys.2015.10.014_b0145) 2005; 28
Hazra (10.1016/j.chemphys.2015.10.014_b0160) 2007; 333
Ungan (10.1016/j.chemphys.2015.10.014_b0180) 2015; 81
Tiutiunnyk (10.1016/j.chemphys.2015.10.014_b0050) 2014; 60
Ganguly (10.1016/j.chemphys.2015.10.014_b0290) 2014; 438
Ta¸s (10.1016/j.chemphys.2015.10.014_b0005) 2012; 112
Xie (10.1016/j.chemphys.2015.10.014_b0270) 2011; 151
Baskoutas (10.1016/j.chemphys.2015.10.014_b0195) 2011; 84
Ünlu (10.1016/j.chemphys.2015.10.014_b0120) 2006; 33
Xie (10.1016/j.chemphys.2015.10.014_b0190) 2010; 405
Karabulut (10.1016/j.chemphys.2015.10.014_b0170) 2010; 256
Xiao (10.1016/j.chemphys.2015.10.014_b0240) 1999; 86
Kirak (10.1016/j.chemphys.2015.10.014_b0060) 2011; 109
Duque (10.1016/j.chemphys.2015.10.014_b0080) 2013; 143
Yilmaz (10.1016/j.chemphys.2015.10.014_b0010) 2010; 247
Ganguly (10.1016/j.chemphys.2015.10.014_b0300) 2015; 252
Çakir (10.1016/j.chemphys.2015.10.014_b0030) 2012; 132
Liu (10.1016/j.chemphys.2015.10.014_b0280) 2012; 407
Ungan (10.1016/j.chemphys.2015.10.014_b0075) 2012; 132
Niculescu (10.1016/j.chemphys.2015.10.014_b0090) 2011; 131
Narayanan (10.1016/j.chemphys.2015.10.014_b0065) 2012; 51
References_xml – volume: 106
  start-page: 8
  year: 2009
  ident: b0320
  publication-title: J. Appl. Phys.
– volume: 51
  start-page: 184
  year: 2012
  ident: b0045
  publication-title: Superlattices Microstruct.
– volume: 84
  start-page: 241
  year: 2011
  ident: b0195
  publication-title: Eur. Phys. J. B
– volume: 139
  start-page: 64
  year: 2013
  ident: b0115
  publication-title: J. Lumin.
– volume: 47
  start-page: 266
  year: 2010
  ident: b0230
  publication-title: Superlattices Microstruct.
– volume: 405
  start-page: 3436
  year: 2010
  ident: b0190
  publication-title: Physica B
– volume: 132
  start-page: 1627
  year: 2012
  ident: b0075
  publication-title: J. Lumin.
– volume: 405
  start-page: 22
  year: 2012
  ident: b0155
  publication-title: Chem. Phys.
– volume: 13
  start-page: 2563
  year: 2001
  ident: b0200
  publication-title: J. Phys. Cond. Mater.
– volume: 438
  start-page: 75
  year: 2014
  ident: b0290
  publication-title: Chem. Phys.
– volume: 408
  start-page: 69
  year: 2012
  ident: b0165
  publication-title: Chem. Phys.
– volume: 131
  start-page: 1113
  year: 2011
  ident: b0090
  publication-title: J. Lumin.
– volume: 86
  start-page: 4509
  year: 1999
  ident: b0240
  publication-title: J. Appl. Phys.
– volume: 115
  start-page: 10
  year: 2014
  ident: b0295
  publication-title: J. Appl. Phys.
– volume: 132
  start-page: 2659
  year: 2012
  ident: b0030
  publication-title: J. Lumin.
– volume: 79
  start-page: 9181
  year: 1996
  ident: b0235
  publication-title: J. Appl. Phys.
– volume: 403
  start-page: 4319
  year: 2008
  ident: b0095
  publication-title: Physica B
– volume: 374
  start-page: 2675
  year: 2010
  ident: b0150
  publication-title: Phys. Lett. A
– volume: 151
  start-page: 545
  year: 2011
  ident: b0270
  publication-title: Solid State Commun.
– volume: 282
  start-page: 3999
  year: 2009
  ident: b0025
  publication-title: Optics Commun.
– volume: 372
  start-page: 5498
  year: 2008
  ident: b0100
  publication-title: Phys. Lett. A
– volume: 256
  start-page: 7570
  year: 2010
  ident: b0170
  publication-title: Appl. Surf. Sci.
– volume: 283
  start-page: 1795
  year: 2010
  ident: b0020
  publication-title: Optics Commun.
– volume: 407
  start-page: 2334
  year: 2012
  ident: b0265
  publication-title: Physica B
– volume: 407
  start-page: 3676
  year: 2012
  ident: b0280
  publication-title: Physica B
– volume: 103
  start-page: 5
  year: 2008
  ident: b0125
  publication-title: J. Appl. Phys.
– volume: 452
  start-page: 82
  year: 2014
  ident: b0135
  publication-title: Physica B
– volume: 33
  start-page: 319
  year: 2006
  ident: b0120
  publication-title: Physica E
– volume: 376
  start-page: 1875
  year: 2012
  ident: b0175
  publication-title: Physics Letters A
– volume: 247
  start-page: 371
  year: 2010
  ident: b0010
  publication-title: Phys. Status Solidi B
– volume: 373
  start-page: 3079
  year: 2009
  ident: b0130
  publication-title: Phys. Lett. A
– volume: 28
  start-page: 14
  year: 2005
  ident: b0145
  publication-title: Physica E
– volume: 220
  start-page: 187
  year: 2000
  ident: b0205
  publication-title: Phys. Status Solidi B
– volume: 47
  start-page: 556
  year: 2010
  ident: b0035
  publication-title: Superlattices Microstruct.
– volume: 114
  start-page: 023510
  year: 2013
  ident: b0040
  publication-title: J. Appl. Phys.
– volume: 48
  start-page: 450
  year: 2010
  ident: b0140
  publication-title: Superlattices Microstruct.
– volume: 51
  start-page: 486
  year: 2012
  ident: b0065
  publication-title: Superlattices Microstruct
– volume: 284
  start-page: 3298
  year: 2011
  ident: b0085
  publication-title: Optics Commun.
– volume: 47
  start-page: 325
  year: 2010
  ident: b0285
  publication-title: Superlattices Microstruct.
– volume: 252
  start-page: 289
  year: 2015
  ident: b0300
  publication-title: Physica Status Solidi B
– volume: 50
  start-page: 400
  year: 2011
  ident: b0315
  publication-title: Superlattices Microstruct.
– volume: 48
  start-page: 312
  year: 2010
  ident: b0255
  publication-title: Superlattices Microstruct.
– volume: 41
  start-page: 779
  year: 2009
  ident: b0110
  publication-title: Physica E
– volume: 372
  start-page: 888
  year: 2008
  ident: b0105
  publication-title: Phys. Lett. A
– volume: 60
  start-page: 127
  year: 2014
  ident: b0050
  publication-title: Physica E
– volume: 109
  start-page: 094309
  year: 2011
  ident: b0060
  publication-title: J. Appl. Phys.
– volume: 73
  start-page: 171
  year: 2014
  ident: b0210
  publication-title: Superlattices Microstruct.
– volume: 404
  start-page: 1625
  year: 2009
  ident: b0220
  publication-title: Physica B
– volume: 152
  start-page: 1761
  year: 2012
  ident: b0185
  publication-title: Solid State Commun.
– volume: 29
  start-page: 25
  year: 2001
  ident: b0250
  publication-title: Superlattices Microstruct.
– volume: 406
  start-page: 4423
  year: 2011
  ident: b0260
  publication-title: Physica B
– volume: 48
  start-page: 276
  year: 2010
  ident: b0305
  publication-title: Superlattices Microstruct.
– volume: 112
  start-page: 053717
  year: 2012
  ident: b0005
  publication-title: J. Appl. Phys.
– volume: 333
  start-page: 18
  year: 2007
  ident: b0160
  publication-title: Chem. Phys.
– volume: 11
  start-page: 176
  year: 2011
  ident: b0070
  publication-title: Current Appl. Phys.
– volume: 143
  start-page: 304
  year: 2013
  ident: b0080
  publication-title: J. Lumin.
– volume: 55
  start-page: 283
  year: 2007
  ident: b0015
  publication-title: Eur. Phys. J.B
– volume: 66
  start-page: 107
  year: 2015
  ident: b0055
  publication-title: Physica E
– volume: 27
  start-page: 198
  year: 2005
  ident: b0245
  publication-title: Physica E
– volume: 81
  start-page: 26
  year: 2015
  ident: b0180
  publication-title: Superlattices Microstruct.
– volume: 50
  start-page: 331
  year: 2011
  ident: b0215
  publication-title: Superlattices Microstruct.
– volume: 19
  start-page: 9
  year: 2007
  ident: b0225
  publication-title: J. Phys:Cond. Mat.
– volume: 50
  start-page: 40
  year: 2011
  ident: b0275
  publication-title: Superlattices Microstruct.
– volume: 54
  start-page: 7
  year: 2013
  ident: b0310
  publication-title: Superlattices Microstruct.
– volume: 48
  start-page: 276
  year: 2010
  ident: 10.1016/j.chemphys.2015.10.014_b0305
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2010.06.014
– volume: 284
  start-page: 3298
  year: 2011
  ident: 10.1016/j.chemphys.2015.10.014_b0085
  publication-title: Optics Commun.
  doi: 10.1016/j.optcom.2011.02.071
– volume: 109
  start-page: 094309
  year: 2011
  ident: 10.1016/j.chemphys.2015.10.014_b0060
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3582137
– volume: 103
  start-page: 5
  year: 2008
  ident: 10.1016/j.chemphys.2015.10.014_b0125
  publication-title: J. Appl. Phys.
– volume: 48
  start-page: 312
  year: 2010
  ident: 10.1016/j.chemphys.2015.10.014_b0255
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2010.06.015
– volume: 50
  start-page: 331
  year: 2011
  ident: 10.1016/j.chemphys.2015.10.014_b0215
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2011.07.011
– volume: 48
  start-page: 450
  year: 2010
  ident: 10.1016/j.chemphys.2015.10.014_b0140
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2010.08.009
– volume: 131
  start-page: 1113
  year: 2011
  ident: 10.1016/j.chemphys.2015.10.014_b0090
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2011.02.028
– volume: 51
  start-page: 486
  year: 2012
  ident: 10.1016/j.chemphys.2015.10.014_b0065
  publication-title: Superlattices Microstruct
  doi: 10.1016/j.spmi.2012.01.012
– volume: 47
  start-page: 325
  year: 2010
  ident: 10.1016/j.chemphys.2015.10.014_b0285
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2009.12.004
– volume: 139
  start-page: 64
  year: 2013
  ident: 10.1016/j.chemphys.2015.10.014_b0115
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2013.02.030
– volume: 404
  start-page: 1625
  year: 2009
  ident: 10.1016/j.chemphys.2015.10.014_b0220
  publication-title: Physica B
  doi: 10.1016/j.physb.2009.01.037
– volume: 152
  start-page: 1761
  year: 2012
  ident: 10.1016/j.chemphys.2015.10.014_b0185
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2012.05.023
– volume: 406
  start-page: 4423
  year: 2011
  ident: 10.1016/j.chemphys.2015.10.014_b0260
  publication-title: Physica B
  doi: 10.1016/j.physb.2011.08.105
– volume: 403
  start-page: 4319
  year: 2008
  ident: 10.1016/j.chemphys.2015.10.014_b0095
  publication-title: Physica B
  doi: 10.1016/j.physb.2008.09.021
– volume: 256
  start-page: 7570
  year: 2010
  ident: 10.1016/j.chemphys.2015.10.014_b0170
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.06.004
– volume: 143
  start-page: 304
  year: 2013
  ident: 10.1016/j.chemphys.2015.10.014_b0080
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2013.04.048
– volume: 132
  start-page: 2659
  year: 2012
  ident: 10.1016/j.chemphys.2015.10.014_b0030
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2012.03.065
– volume: 50
  start-page: 40
  year: 2011
  ident: 10.1016/j.chemphys.2015.10.014_b0275
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2011.04.007
– volume: 115
  start-page: 10
  year: 2014
  ident: 10.1016/j.chemphys.2015.10.014_b0295
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4875377
– volume: 282
  start-page: 3999
  year: 2009
  ident: 10.1016/j.chemphys.2015.10.014_b0025
  publication-title: Optics Commun.
  doi: 10.1016/j.optcom.2009.06.043
– volume: 405
  start-page: 3436
  year: 2010
  ident: 10.1016/j.chemphys.2015.10.014_b0190
  publication-title: Physica B
  doi: 10.1016/j.physb.2010.05.019
– volume: 220
  start-page: 187
  year: 2000
  ident: 10.1016/j.chemphys.2015.10.014_b0205
  publication-title: Phys. Status Solidi B
  doi: 10.1002/1521-3951(200007)220:1<187::AID-PSSB187>3.0.CO;2-D
– volume: 29
  start-page: 25
  year: 2001
  ident: 10.1016/j.chemphys.2015.10.014_b0250
  publication-title: Superlattices Microstruct.
  doi: 10.1006/spmi.2000.0907
– volume: 51
  start-page: 184
  year: 2012
  ident: 10.1016/j.chemphys.2015.10.014_b0045
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2011.11.012
– volume: 452
  start-page: 82
  year: 2014
  ident: 10.1016/j.chemphys.2015.10.014_b0135
  publication-title: Physica B
  doi: 10.1016/j.physb.2014.07.003
– volume: 84
  start-page: 241
  year: 2011
  ident: 10.1016/j.chemphys.2015.10.014_b0195
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2011-20470-9
– volume: 112
  start-page: 053717
  year: 2012
  ident: 10.1016/j.chemphys.2015.10.014_b0005
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4751483
– volume: 372
  start-page: 888
  year: 2008
  ident: 10.1016/j.chemphys.2015.10.014_b0105
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2007.08.046
– volume: 372
  start-page: 5498
  year: 2008
  ident: 10.1016/j.chemphys.2015.10.014_b0100
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2008.06.059
– volume: 73
  start-page: 171
  year: 2014
  ident: 10.1016/j.chemphys.2015.10.014_b0210
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2014.05.023
– volume: 13
  start-page: 2563
  year: 2001
  ident: 10.1016/j.chemphys.2015.10.014_b0200
  publication-title: J. Phys. Cond. Mater.
  doi: 10.1088/0953-8984/13/11/312
– volume: 50
  start-page: 400
  year: 2011
  ident: 10.1016/j.chemphys.2015.10.014_b0315
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2011.08.002
– volume: 333
  start-page: 18
  year: 2007
  ident: 10.1016/j.chemphys.2015.10.014_b0160
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2006.12.014
– volume: 55
  start-page: 283
  year: 2007
  ident: 10.1016/j.chemphys.2015.10.014_b0015
  publication-title: Eur. Phys. J.B
  doi: 10.1140/epjb/e2007-00055-1
– volume: 19
  start-page: 9
  year: 2007
  ident: 10.1016/j.chemphys.2015.10.014_b0225
  publication-title: J. Phys:Cond. Mat.
– volume: 54
  start-page: 7
  year: 2013
  ident: 10.1016/j.chemphys.2015.10.014_b0310
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2012.10.014
– volume: 11
  start-page: 176
  year: 2011
  ident: 10.1016/j.chemphys.2015.10.014_b0070
  publication-title: Current Appl. Phys.
  doi: 10.1016/j.cap.2010.07.002
– volume: 373
  start-page: 3079
  year: 2009
  ident: 10.1016/j.chemphys.2015.10.014_b0130
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2009.06.042
– volume: 247
  start-page: 371
  year: 2010
  ident: 10.1016/j.chemphys.2015.10.014_b0010
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.200945491
– volume: 86
  start-page: 4509
  year: 1999
  ident: 10.1016/j.chemphys.2015.10.014_b0240
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.371394
– volume: 28
  start-page: 14
  year: 2005
  ident: 10.1016/j.chemphys.2015.10.014_b0145
  publication-title: Physica E
  doi: 10.1016/j.physe.2005.01.018
– volume: 114
  start-page: 023510
  year: 2013
  ident: 10.1016/j.chemphys.2015.10.014_b0040
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4813094
– volume: 376
  start-page: 1875
  year: 2012
  ident: 10.1016/j.chemphys.2015.10.014_b0175
  publication-title: Physics Letters A
  doi: 10.1016/j.physleta.2012.04.028
– volume: 132
  start-page: 1627
  year: 2012
  ident: 10.1016/j.chemphys.2015.10.014_b0075
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2012.02.033
– volume: 283
  start-page: 1795
  year: 2010
  ident: 10.1016/j.chemphys.2015.10.014_b0020
  publication-title: Optics Commun.
  doi: 10.1016/j.optcom.2009.12.027
– volume: 33
  start-page: 319
  year: 2006
  ident: 10.1016/j.chemphys.2015.10.014_b0120
  publication-title: Physica E
  doi: 10.1016/j.physe.2006.03.163
– volume: 252
  start-page: 289
  year: 2015
  ident: 10.1016/j.chemphys.2015.10.014_b0300
  publication-title: Physica Status Solidi B
  doi: 10.1002/pssb.201451374
– volume: 374
  start-page: 2675
  year: 2010
  ident: 10.1016/j.chemphys.2015.10.014_b0150
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2010.04.049
– volume: 405
  start-page: 22
  year: 2012
  ident: 10.1016/j.chemphys.2015.10.014_b0155
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2012.06.002
– volume: 407
  start-page: 3676
  year: 2012
  ident: 10.1016/j.chemphys.2015.10.014_b0280
  publication-title: Physica B
  doi: 10.1016/j.physb.2012.05.049
– volume: 408
  start-page: 69
  year: 2012
  ident: 10.1016/j.chemphys.2015.10.014_b0165
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2012.09.023
– volume: 407
  start-page: 2334
  year: 2012
  ident: 10.1016/j.chemphys.2015.10.014_b0265
  publication-title: Physica B
  doi: 10.1016/j.physb.2012.03.030
– volume: 79
  start-page: 9181
  year: 1996
  ident: 10.1016/j.chemphys.2015.10.014_b0235
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.362590
– volume: 41
  start-page: 779
  year: 2009
  ident: 10.1016/j.chemphys.2015.10.014_b0110
  publication-title: Physica E
  doi: 10.1016/j.physe.2008.12.012
– volume: 106
  start-page: 8
  year: 2009
  ident: 10.1016/j.chemphys.2015.10.014_b0320
  publication-title: J. Appl. Phys.
– volume: 47
  start-page: 266
  year: 2010
  ident: 10.1016/j.chemphys.2015.10.014_b0230
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2009.10.015
– volume: 81
  start-page: 26
  year: 2015
  ident: 10.1016/j.chemphys.2015.10.014_b0180
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2015.01.016
– volume: 438
  start-page: 75
  year: 2014
  ident: 10.1016/j.chemphys.2015.10.014_b0290
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2014.04.014
– volume: 60
  start-page: 127
  year: 2014
  ident: 10.1016/j.chemphys.2015.10.014_b0050
  publication-title: Physica E
  doi: 10.1016/j.physe.2014.02.017
– volume: 27
  start-page: 198
  year: 2005
  ident: 10.1016/j.chemphys.2015.10.014_b0245
  publication-title: Physica E
  doi: 10.1016/j.physe.2004.11.002
– volume: 151
  start-page: 545
  year: 2011
  ident: 10.1016/j.chemphys.2015.10.014_b0270
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2011.01.013
– volume: 47
  start-page: 556
  year: 2010
  ident: 10.1016/j.chemphys.2015.10.014_b0035
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2009.12.002
– volume: 66
  start-page: 107
  year: 2015
  ident: 10.1016/j.chemphys.2015.10.014_b0055
  publication-title: Physica E
  doi: 10.1016/j.physe.2014.09.021
SSID ssj0005835
Score 2.299201
Snippet [Display omitted] •Total optical absorption coefficient (TOAC) of impurity doped quantum dot is studied.•The dot is subject to Gaussian white noise.•TOAC is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 149
SubjectTerms Gaussian white noise
Impurity
Noise strength
Quantum dot
Total optical absorption coefficient
Title Analyzing total optical absorption coefficient of impurity doped quantum dots in presence of noise with special emphasis on electric field, magnetic field and confinement potential
URI https://dx.doi.org/10.1016/j.chemphys.2015.10.014
Volume 463
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9RADB5VRQguCAqIUlr5wJHsJplJsnusVlQLiF6gUm_RPByUqpsJTfbCob-qP7D2JKkWCakHjjOK8xhb42-cz7YQHzMslM4widIUkQ4oJo50wbZM7onhR2pCL4Lv5_n6Qn29zC73xGrKhWFa5bj3D3t62K3Hmfm4mvO2ruc_GMzzaYIgTSxlwRnlShVs5bPbHZrHYmiyKcOxOVY7WcJXM1qXDUcQmOKVzZjllah_O6gdp3P2UrwY0SKcDi_0SuxhcyCeraYmbQfiaWBw2u61uAvlRf6QJ4LeE6IG34YwNWjT-ZuwMYD1GCpGkKMBX0G9aUPvOnC-RQe_t7TK2w2N-g7qBtqQmWSRL2183SFw0Ba6oWM98Dfpru6Abjw006ktBELcJ9joXw1nRw5j0I2jZzcVIVoORkLreyYp6es34uLs88_VOhpbMkRWJmkfJQvSuTPGcdUes1RmWeXOapkjKbXQyhT8IxANwTiULneyShOX27hYYqqd1vKt2G98g-8ELLTJNRauqiypLdZGVolViXMEClNr8FBkkx5KO9Yr57YZ1-VETLsqJ_2VrD-eJ_0divmDXDtU7HhUYjmpufzL9kpyK4_Ivv8P2SPxnEdMjknyD2K_v9niMUGc3pwEGz4RT06_fFuf3wMGmQJ2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbooopeKkpbQR90Dj02bBI78e4RrYqWAnspSNwiv1IFsXFKspf-rv7AzjhJSyUkDhzjZPLwWDOfJ9_MMPY5c1KozCVRmjqHGxQdR0rSWkb3RPAj1aEXwcUqX16Jb9fZ9RZbjLkwRKscbH9v04O1Hkamw2xOm6qaficwT7sJhDQx51I-Y9tUnSqbsO3j07Pl6h_TY9b32eRh5xyLe4nCN0c4NWsKIhDLKzsiolciHvZR9_zOyS57OQBGOO7f6RXbcvUe21mMfdr22PNA4jTta_Y7VBj5hc4IOo-gGnwTItWgdOvvgm0A410oGoG-BnwJ1boJ7evA-sZZ-LnBid6s8ahroaqhCclJxtGlta9aBxS3hbZvWg_0TaqtWsAb9_10KgOBE_cF1upHTQmS_TGo2uKz6xJBLcUjofEd8ZTU7Rt2dfL1crGMhq4MkeFJ2kXJDNVutbZUuEfPhZ6XuTWK5w71KpXQkv4FOo1IznGbW16mic1NLOcuVVYp_pZNal-7fQYzpXPlpC1LI4SMleZlYkRiLeLC1Gh3wLJRD4UZSpZT54zbYuSm3RSj_grSH42j_g7Y9K9c0xfteFRiPqq5-G_5FehZHpF99wTZT2xneXlxXpyfrs7esxd0hrgySf6BTbq7jfuIiKfTh8OK_gPHfQUn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analyzing+total+optical+absorption+coefficient+of+impurity+doped+quantum+dots+in+presence+of+noise+with+special+emphasis+on+electric+field%2C+magnetic+field+and+confinement+potential&rft.jtitle=Chemical+physics&rft.au=Mandal%2C+Arkajit&rft.au=Sarkar%2C+Sucharita&rft.au=Ghosh%2C+Arghya+Pratim&rft.au=Ghosh%2C+Manas&rft.date=2015-12-16&rft.pub=Elsevier+B.V&rft.issn=0301-0104&rft.volume=463&rft.spage=149&rft.epage=158&rft_id=info:doi/10.1016%2Fj.chemphys.2015.10.014&rft.externalDocID=S0301010415003377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-0104&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-0104&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-0104&client=summon