Existence of multiple solutions for a wide class of differential inclusions

We give a unified approach to study the existence of multiple positive solutions of nonlinear differential inclusions of the form −u′′(t)∈F(t,u(t)),a.e.t∈(0,1),$$\begin{equation*}\hskip7pc -u^{\prime \prime }(t)\in F(t,u(t)),\; \text{a.e.} \; t \in (0,1), \end{equation*}$$subject to various nonlocal...

Full description

Saved in:
Bibliographic Details
Published inMathematische Nachrichten Vol. 296; no. 1; pp. 152 - 163
Main Authors Cianciaruso, Filomena, Pietramala, Paolamaria
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We give a unified approach to study the existence of multiple positive solutions of nonlinear differential inclusions of the form −u′′(t)∈F(t,u(t)),a.e.t∈(0,1),$$\begin{equation*}\hskip7pc -u^{\prime \prime }(t)\in F(t,u(t)),\; \text{a.e.} \; t \in (0,1), \end{equation*}$$subject to various nonlocal boundary conditions. We study these problems via a perturbed integral inclusion of the form u(t)∈Bu(t)+∫01k(t,s)F(s,u(s))ds$ u(t)\in Bu(t) +\int _{0}^{1}k(t,s)F(s,u(s))\,ds$.
Bibliography:Solutions for a wide class of differential inclusions.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.202100385