Invariant hypercomplex structures and algebraic curves
We show that U(k)$U(k)$‐invariant hypercomplex structures on (open subsets) of regular semisimple adjoint orbits in gl(k,C)${\mathfrak {g} \mathfrak {l}}(k,{\mathbb {C}})$ correspond to algebraic curves C of genus (k−1)2$(k-1)^2$, equipped with a flat projection π:C→P1$\pi :C\rightarrow {\mathbb {P}...
Saved in:
Published in | Mathematische Nachrichten Vol. 296; no. 1; pp. 122 - 129 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We show that U(k)$U(k)$‐invariant hypercomplex structures on (open subsets) of regular semisimple adjoint orbits in gl(k,C)${\mathfrak {g} \mathfrak {l}}(k,{\mathbb {C}})$ correspond to algebraic curves C of genus (k−1)2$(k-1)^2$, equipped with a flat projection π:C→P1$\pi :C\rightarrow {\mathbb {P}}^1$ of degree k, and an antiholomorphic involution σ:C→C$\sigma :C\rightarrow C$ covering the antipodal map on P1${\mathbb {P}}^1$. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.202100223 |