Classification of acute myeloid leukemia subtypes M1, M2 and M3 using active contour without edge segmentation and momentum backpropagation artificial neural network

Acute Myeloid Leukemia (AML) is a type of cancer which attacks white blood cells from myeloid. AML has eight subtypes, namely: M0, M1, M2, M3, M4, M5, M6, and M7. AML subtypes M1, M2 and M3 are affected by the same type of cells, myeloblast , making it needs more detailed analysis to distinguish. To...

Full description

Saved in:
Bibliographic Details
Published inMATEC Web of Conferences Vol. 154; p. 1041
Main Authors Harjoko, Agus, Ratnaningsih, Tri, Suryani, Esti, Wiharto, Palgunadi, Sarngadi, Prakisya, Nurcahya Pradana Taufik
Format Journal Article Conference Proceeding
LanguageEnglish
Published Les Ulis EDP Sciences 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Acute Myeloid Leukemia (AML) is a type of cancer which attacks white blood cells from myeloid. AML has eight subtypes, namely: M0, M1, M2, M3, M4, M5, M6, and M7. AML subtypes M1, M2 and M3 are affected by the same type of cells, myeloblast , making it needs more detailed analysis to distinguish. To overcome these obstacles, this research is applying digital image processing with Active Contour Without Edge (ACWE) and Momentum Backpropagation artificial neural network for AML subtypes M1, M2 and M3 classification based on the type of the cell. Six features required as training parameters from every cell obtained by using feature extraction. The features are: cell area, perimeter, circularity, nucleus ratio, mean and standard deviation. The results show that ACWE can be used for segmenting white blood cells with 83.789% success percentage of 876 total cell objects. The whole AML slides had been identified according to the cell types predicted number through training with momentum backpropagation. Five times testing calibration with the best parameter generated averages value of 84.754% precision, 75.887% sensitivity, 95.090% specificity and 93.569% accuracy.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201815401041