Fully biobased hydrogel based on chitosan and tannic acid coated cotton fabric for underwater superoleophobicity and efficient oil/water separation

Underwater superoleophobic (UWSO) materials have garnered significant attention in separating oil/water mixtures. But, the majority of these materials are made from non-degradable and non-renewable raw materials, polluting the environment and wasting scarce resources while using them. Against this b...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 254; no. Pt 3; p. 127892
Main Authors Hu, Dan-Dan, Zhang, Ye-Xin, Li, Yi-Dong, Zeng, Jian-Bing
Format Journal Article
LanguageEnglish
Published Netherlands 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Underwater superoleophobic (UWSO) materials have garnered significant attention in separating oil/water mixtures. But, the majority of these materials are made from non-degradable and non-renewable raw materials, polluting the environment and wasting scarce resources while using them. Against this backdrop, this study aimed to fabricate an environmental-friendly UWSO textile using biobased materials. To achieve this, hydrogel consisting of chitosan (CS) and poly(tannic acid) (PTA) were formed and coated on cotton fabric (CTF) via dip-coating followed by oxidative polymerization. CS&PTA hydrogel endowed the CTF with a rough surface and high surface energy, leading to an UWSO CTF with an underwater oil contact angle as high as 166.84°. The CS&PTA/CTF had excellent separation capability toward various oil/water mixtures, showing separation efficiency above 99.84 % and water flux higher than 23, 999 L m  h . Moreover, CS&PTA/CTF possessed excellent mechanical and environmental stability with underwater superoleophobicity unchanged after sandpaper friction, ultrasonication, organic solvents, NaCl (m/v, 30 %) solution, and acid/base solution immersion, due to the strong interaction between the hydrogel and cotton fabric generated by the mussel-inspired adhesion owing to the presence of PTA. The fully biobased UWSO CTF exhibits great promising to be an alternative to traditional superwetting materials for separation of oil/water mixtures.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.127892