Super-twisting sliding mode control for neutral point voltage of three-phase four-wire inverter based on SiC/Si hybrid switch

The three-phase four-wire voltage source inverter (3P4W VSI) is widely used in applications like uninterrupted power supply (UPS) and bidirectional onboard charger. The increasing power density demand requires higher switching frequency and lower switching loss. To fulfill the conflicting objectives...

Full description

Saved in:
Bibliographic Details
Published inISA transactions Vol. 144; pp. 352 - 363
Main Authors Fu, Yong-Sheng, Ren, Hai-Peng
Format Journal Article
LanguageEnglish
Published United States 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The three-phase four-wire voltage source inverter (3P4W VSI) is widely used in applications like uninterrupted power supply (UPS) and bidirectional onboard charger. The increasing power density demand requires higher switching frequency and lower switching loss. To fulfill the conflicting objectives, two-fold methodology is proposed in this paper: 1) SiC/Si hybrid switches (HyS) together with recently reported gate trigger are reported for the first time in the 3P4W VSI; 2) the natural point voltage is controlled to track a sinusoidal voltage with the frequency equal to 3 times of fundamental frequency in order to achieve higher DC-bus voltage utilization rate, and further reduce the switching loss. The traditional PI controller is very hard to achieve desired performance due to both the nonlinearity and the variant reference of the natural point voltage control system. Thereby, the super-twisting sliding mode control (ST-SMC) is proposed in this paper to achieve desired tracking performance and fast dynamic response. The effectiveness and superiority of the system are verified by both simulation and experiment comparison with the existing methods using a 5 kW prototype.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0019-0578
1879-2022
DOI:10.1016/j.isatra.2023.10.022