Discovery of hydroxamate as a promising scaffold dually inhibiting metallo- and serine-β-lactamases

The bacterial infection mediated by β-lactamases MβLs and SβLs has grown into an emergent health threat, however, development of a molecule that dual inhibits both MβLs and SβLs is challenging. In this work, a series of hydroxamates 1a-g, 2a-e, 3a-c, 4a-c were synthesized, characterized by 1H and 13...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of medicinal chemistry Vol. 265; p. 116055
Main Authors Wu, Xiao-Rong, Chen, Wei-Ya, Liu, Lu, Yang, Ke-Wu
Format Journal Article
LanguageEnglish
Published ISSY-LES-MOULINEAUX Elsevier Masson SAS 05.02.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The bacterial infection mediated by β-lactamases MβLs and SβLs has grown into an emergent health threat, however, development of a molecule that dual inhibits both MβLs and SβLs is challenging. In this work, a series of hydroxamates 1a-g, 2a-e, 3a-c, 4a-c were synthesized, characterized by 1H and 13C NMR and confirmed by HRMS. Biochemical assays revealed that these molecules dually inhibited MβLs (NDM-1, IMP-1) and SβLs (KPC-2, OXA-48), with an IC50 value in the range of 0.64–41.08 and 1.01–41.91 μM (except 1a and 1d on SβLs, IC50 > 50 μM), and 1f was found to be the best inhibitor with an IC50 value in the range of 0.64–1.32 and 0.57–1.01 μM, respectively. Mechanism evaluation indicated that 1f noncompetitively and irreversibly inhibited NDM-1 and KPC-2, with Ki value of 2.5 and 0.55 μM, is a time- and dose-dependent inhibitor of both MβLs and SβLs. MIC tests shown that all hydroxamates increased the antimicrobial effect of MER on E. coli-NDM-1 and E. coli-IMP-1 (expect 1b, 1d, 1g and 2d), resulting in a 2-8-fold reduction in MICs of MER, 1e-g, 2b–d, 3a-c and 4b-c decreased 2-4-fold MICs of MER on E. coli-KPC-2, and 1c, 1f-g, 2a–c, 3b, 4a and 4c decreased 2-16-fold MICs of MER on E. coli-OXA-48. Most importantly, 1f-g, 2b–c, 3b and 4c exhibited the dual synergizing inhibition against both E. coli-MβLs and E. coli-SβLs tested, resulting in a 2-8-fold reduction in MICs of MER, and 1f was found to have the best effect on the drug-resistant bacteria tested. Also, 1f shown synergizing antimicrobial effect on five clinical isolates EC04, EC06, EC08, EC10 and EC24 that produce NDM-1, resulting in a 2-8-fold reduction in MIC of MER, but its effect on E. coli and K. pneumonia-KPC-NDM was not to be observed using the same dose of inhibitor. Mice tests shown that the monotherapy of 1f or 4a in combination with MER significantly reduced the bacterial load of E. coli-NDM-1 and E. coli-OXA-48 cells in liver and spleen, respectively. The discovery in this work offered a promising bifunctional scaffold for creating the specific molecules that dually inhibit MβLs and MβLs, in combating antibiotic-resistant bacteria. [Display omitted] •Discovery: hydroxamate dually inhibit metallo- and serine-β-lactamases (MβLs, SβLs).•Hydroxamate had a IC50 up to 0.64,1.32, 0.57, 1.01 μM on NDM-1, IMP-1, KPC-2, OXA-48.•Hydroxamate shown dual synergizing inhibition on E. coli-MβLs and E. coli-SβLs tested.•Hydroxamate killed five clinical isolates E. coli producing NDM-1 in synergizing MER.•Hydroxamate markedly abated load of E. coli-NDM-1/OXA-48 in liver and spleen with MER.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0223-5234
1768-3254
DOI:10.1016/j.ejmech.2023.116055