Tympanic and extratympanic sound transmission in the leopard frog

The inner ear of the leopard frog, Rana pipiens, receives sound via two separate pathways: the tympanic-columellar pathway and an extra-tympanic route. The relative efficiency of the two pathways was investigated. Laser interferometry measurements of tympanic vibration induced by free-field acoustic...

Full description

Saved in:
Bibliographic Details
Published inJournal of comparative physiology. A, Sensory, neural, and behavioral physiology Vol. 161; no. 5; p. 659
Main Authors Wilczynski, W, Resler, C, Capranica, R R
Format Journal Article
LanguageEnglish
Published Germany 01.01.1987
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:The inner ear of the leopard frog, Rana pipiens, receives sound via two separate pathways: the tympanic-columellar pathway and an extra-tympanic route. The relative efficiency of the two pathways was investigated. Laser interferometry measurements of tympanic vibration induced by free-field acoustic stimulation reveal a broadly tuned response with maximal vibration at 800 and 1500 Hz. Vibrational amplitude falls off rapidly above and below these frequencies so that above 2 kHz and below 300 Hz tympanic vibration is severely reduced. Electrophysiological measurements of the thresholds of single eighth cranial nerve fibers from both the amphibian and basilar papillae in response to pure tones were made in such a way that the relative efficiency of tympanic and extratympanic transmission could be assessed for each fiber. Thresholds for the two routes are very similar up to 1.0 kHz, above which tympanic transmission eventually becomes more efficient by 15-20 dB. By varying the relative phase of the two modes of stimulation, a reduction of the eighth nerve response can be achieved. When considered together, the measurements of tympanic vibration and the measurements of tympanic and extratympanic transmission thresholds suggest that under normal conditions in this species (1) below 300 Hz extratympanic sound transmission is the main source of inner ear stimulation; (2) for most of the basilar papilla frequency range (i.e., above 1.2 kHz) tympanic transmission is more important; and (3) both routes contribute to the stimulation of amphibian papilla fibers tuned between those points. Thus acoustic excitation of the an uran's inner ear depends on a complex interaction between tympanic and extratympanic sound transmission.
DOI:10.1007/BF00605007