Spatial processing within the mustache bat echolocation system: possible mechanisms for optimization
1. The directionality of an echolocation system is determined by the acoustic properties of both the emitter and receiver, i.e., by the radiation pattern of the emitted pulse and the directionally of the external ears. We measured the directionality of the echolocation system of the greater mustache...
Saved in:
Published in | Journal of comparative physiology. A, Sensory, neural, and behavioral physiology Vol. 170; no. 1; p. 57 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
01.01.1992
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | 1. The directionality of an echolocation system is determined by the acoustic properties of both the emitter and receiver, i.e., by the radiation pattern of the emitted pulse and the directionally of the external ears. We measured the directionality of the echolocation system of the greater mustache bat (Pteronotus parnellii) at the 30 kHz, 60 kHz and 90 kHz harmonics of its echolocation pulse by summing, at points throughout the frontal sound field, the echo attenuation due to the spread of pulse energy and the attenuation due to the spread of pulse energy and the attenuation due to the directionality of its external ears. The pulse radiation pattern at the 3 harmonics was measured by comparing the output of a microphone moved throughout the frontal sound field against a second reference microphone at the center of the field. External ear directionality at the 3. harmonics was measured by presenting free-field sounds throughout the frontal sound field, and recording the intensity thresholds of cochlear microphonic potentials, and the intensity thresholds of monaural neurons in the inferior colliculus tuned to one of the 3 harmonics. 2. When compared with ear directionality, the echolocation system was found to be more directional for the center of the sound field in several respects. At all harmonics, attenuation of sounds originating in the peripheral part of the field was increased by 10 to 13 dB. Areas of maximum sound intensity contracted toward the center of the field. Also, the isointensity contours of the echolocation system were more radially symmetrical about the center of the field. 3. At 60 kHz, sound intensity along the azimuth within the echolocation system was nearly constant 26 degrees to either side of the center of the field. This suggests that the radiation pattern of the echolocation pulse and the directionality of the external ears complement one another to produce an acoustic environment at the center of the sound field in which stimulus intensity is stabilized to allow more effective analysis of various aspects of the echolocation target. In particular, we suggest that this intensity stabilization may allow the bat to more effectively resolve the interaural intensity differences it uses to localize prey. 4. Predictions of the azimuthal spatial tuning of binaurally sensitive neurons in the inferior colliculus within the echolocation system were compared with their spatial tuning when only ear directionality is considered. |
---|---|
DOI: | 10.1007/BF00190401 |