Exploring Public Data Vulnerabilities in Semi-Supervised Learning Models through Gray-box Adversarial Attack
Semi-supervised learning (SSL) models, integrating labeled and unlabeled data, have gained prominence in vision-based tasks, yet their susceptibility to adversarial attacks remains underexplored. This paper unveils the vulnerability of SSL models to gray-box adversarial attacks—a scenario where the...
Saved in:
Published in | Electronics (Basel) Vol. 13; no. 5; p. 940 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Semi-supervised learning (SSL) models, integrating labeled and unlabeled data, have gained prominence in vision-based tasks, yet their susceptibility to adversarial attacks remains underexplored. This paper unveils the vulnerability of SSL models to gray-box adversarial attacks—a scenario where the attacker has partial knowledge of the model. We introduce an efficient attack method, Gray-box Adversarial Attack on Semi-supervised learning (GAAS), which exploits the dependency of SSL models on publicly available labeled data. Our analysis demonstrates that even with limited knowledge, GAAS can significantly undermine the integrity of SSL models across various tasks, including image classification, object detection, and semantic segmentation, with minimal access to labeled data. Through extensive experiments, we exhibit the effectiveness of GAAS, comparing it to white-box attack scenarios and underscoring the critical need for robust defense mechanisms. Our findings highlight the potential risks of relying on public datasets for SSL model training and advocate for the integration of adversarial training and other defense strategies to safeguard against such vulnerabilities. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics13050940 |