Thermal and mechanical design of reverting microchannels for cooling disk-shaped electronic parts using constructal theory

Purpose The purpose of this study is to study the simultaneous effect of embedded reverting microchannels on the cooling performance and mechanical strength of the electronic pieces. Design/methodology/approach In this study, a new configuration of the microchannel heat sink was proposed based on th...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of numerical methods for heat & fluid flow Vol. 30; no. 1; pp. 245 - 265
Main Authors Dadsetani, Reza, Salimpour, Mohammad Reza, Tavakoli, Mohammad Reza, Goodarzi, Marjan, Pedone Bandarra Filho, Enio
Format Journal Article
LanguageEnglish
Published Bradford Emerald Publishing Limited 15.01.2020
Emerald Group Publishing Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose The purpose of this study is to study the simultaneous effect of embedded reverting microchannels on the cooling performance and mechanical strength of the electronic pieces. Design/methodology/approach In this study, a new configuration of the microchannel heat sink was proposed based on the constructal theory to examine mechanical and thermal aspects. Initially, the thermal-mechanical behavior in the radial arrangement was analyzed, and then, by designing the first reverting channel, maximum temperature and maximum stress on the disk were decreased. After that, by creating second reverting channels, it has been shown that the piece is improved in terms of heat and mechanical strength. Findings Having placed the second reverting channel on the optimum location, the effect of creating the third reverting channel has been investigated. The study has shown that there is a close relationship between the maximum temperature and maximum stress in the disk as maximum temperature and maximum stress decrease in pieces with more uniform distribution channels. Originality/value The proposed structure has decreased the maximum temperature and maximum thermal stresses close to 35 and 50%, respectively, and also improved the mechanical strength, with and without thermal stresses, about 40 and 24%, respectively.
ISSN:0961-5539
1758-6585
DOI:10.1108/HFF-06-2019-0453