A putative nuclear copper chaperone promotes plant immunity in Arabidopsis

Copper is essential for many metabolic processes but must be sequestrated by copper chaperones. It is well known that plant copper chaperones regulate various physiological processes. However, the functions of copper chaperones in the plant nucleus remain largely unknown. Here, we identified a putat...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental botany Vol. 71; no. 20; pp. 6684 - 6696
Main Authors Chai, Long-Xiang, Dong, Kai, Liu, Song-Yu, Zhang, Zhen, Zhang, Xiao-Peng, Tong, Xin, Zhu, Fei-Fan, Zou, Jing-Ze, Wang, Xian-Bing
Format Journal Article
LanguageEnglish
Published England Oxford University Press 22.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Copper is essential for many metabolic processes but must be sequestrated by copper chaperones. It is well known that plant copper chaperones regulate various physiological processes. However, the functions of copper chaperones in the plant nucleus remain largely unknown. Here, we identified a putative copper chaperone induced by pathogens (CCP) in Arabidopsis thaliana. CCP harbors a classical MXCXXC copper-binding site (CBS) at its N-terminus and a nuclear localization signal (NLS) at its C-terminus. CCP mainly formed nuclear speckles in the plant nucleus, which requires the NLS and CBS domains. Overexpression of CCP induced PR1 expression and enhanced resistance against Pseudomonas syringae pv. tomato DC3000 compared with Col-0 plants. Conversely, two CRISPR/Cas9-mediated ccp mutants were impaired in plant immunity. Further biochemical analyses revealed that CCP interacted with the transcription factor TGA2 in vivo and in vitro. Moreover, CCP recruits TGA2 to the PR1 promoter sequences in vivo, which induces defense gene expression and plant immunity. Collectively, our results have identified a putative nuclear copper chaperone required for plant immunity and provided evidence for a potential function of copper in the salicylic pathway.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-0957
1460-2431
DOI:10.1093/jxb/eraa401