Precision touch DNA sampling on plastic bag knots for improved profiling of packer and holder contributions

In forensic DNA analysis, evidence sampling stands as a pivotal step setting the ground for the quality of the forensic profiling. The collection of touch DNA from objects, when guidelines are scarce or absent, is usually governed by ad hoc decisions based on the available case circumstances. In our...

Full description

Saved in:
Bibliographic Details
Published inForensic science international : genetics Vol. 71; p. 103033
Main Authors Stefanović, Aleksandra, Šorgić, Dejan, Cvetković, Nataša, Antović, Aleksandra, Ilić, Goran
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In forensic DNA analysis, evidence sampling stands as a pivotal step setting the ground for the quality of the forensic profiling. The collection of touch DNA from objects, when guidelines are scarce or absent, is usually governed by ad hoc decisions based on the available case circumstances. In our laboratory, in the context of illicit drug-related crimes, similar objects are frequently encountered, offering an opportunity for the standardization of evidence treatment. This study aims to develop an effective method for sampling touch DNA from knots on plastic bags. We examine both the exposed and hidden areas of knots, considering the latter as "protected" zones less likely to accumulate biological material during subsequent handling. The study contrasts a single sample method (whole knot surface sampling, Method 1) with dual-sample methods that separate exterior (exposed) and interior (hidden) surfaces of the knot. Notably, our study consistently reveals higher DNA yields from exterior surfaces of the knots as opposed to interior samples. Importantly, our findings demonstrate that utilizing a single sample may produce DNA profiles that are not interpretable, while employing a dual-sample approach may allow for the differentiation between the genetic contributions of the person who tied the knot, the packer, from the person who held the package, the holder. We have refined the dual-sample method to reduce holder DNA in the interior sample while maintaining it on the exterior, also allowing the packer's DNA to be detected on both surfaces. We explore four dual-sample collection methods. Method 2 involves taking the first sample from the exterior and the second from the interior of an untied knot. Method 3 visually differentiates between the original exposed and hidden surfaces for precise sampling. Method 4 employs tools to open the knot for interior sampling. Method 5 uses Diamond dye to highlight cell-free DNA on both surfaces before sampling. In conclusion, this study not only clarifies the complex dynamics of touch DNA transfer and collection on plastic bag knots, but also offers insights into standardizing evidence collection in similar cases. •Illicit drugs packages carry valuable information about the persons involved in the distribution.•Precision sampling applied to plastic bag knots.•Two- sample methods segregate the packer’s and the holder’s biological materials from the single knot.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1872-4973
1878-0326
DOI:10.1016/j.fsigen.2024.103033