Functions of unique middle loop and C-terminal tail in GnT-III activity and secretion
N-Glycan branching modulates the diversity of protein functions. β1,4-N-acetylglucosaminyltransferase III (GnT-III or MGAT3) produces a unique GlcNAc branch, “bisecting GlcNAc”, in N-glycans, and is involved in Alzheimer's disease and cancer. However, the 3D structure and catalytic mechanism of...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1869; no. 1; p. 130734 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | N-Glycan branching modulates the diversity of protein functions. β1,4-N-acetylglucosaminyltransferase III (GnT-III or MGAT3) produces a unique GlcNAc branch, “bisecting GlcNAc”, in N-glycans, and is involved in Alzheimer's disease and cancer. However, the 3D structure and catalytic mechanism of GnT-III are unclear. According to AlphaFold-based structure prediction, GnT-III likely contains two putative disordered segments, a long middle loop (Loop) and a C-terminal tail (Tail). We hypothesized that these segments play important roles in regulating the activity or intracellular behaviors of GnT-III.
We expressed wild-type GnT-III (GnT-III-WT), GnT-III-Loop- and -Tail-deletion mutants in cells. Their in vitro catalytic activity and glycan biosynthesis in cells were examined using high-performance liquid chromatography, UDP-Glo glycosyltransferase assays, and glycomic analysis. Subcellular localization of WT and GnT-III mutants was investigated by immunostaining, and degradation rate and secretion were also examined.
The Loop-deletion mutant had higher in vitro and in cellulo activity than GnT-III-WT, indicating that Loop suppresses catalytic activity. In contrast, the Tail-deletion mutant showed weaker activity, increased ER localization, and faster degradation than GnT-III-WT, indicating that Tail is required for proper folding. In addition, deletion of Loop led to aberrant shedding of GnT-III, indicating that Loop contains the cleavage site or regulates GnT-III shedding.
Loop and Tail of GnT-III play important roles in catalytic activity, folding and shedding.
Our results provide further understanding of the catalysis and shedding mechanisms of GnT-III and can help in the development of methods for modifying the levels of bisecting GlcNAc on glycoproteins and in cells.
[Display omitted]
•GnT-III biosynthesizes a unique N-glycan branch, bisecting GlcNAc.•GnT-III contains two unique disordered segments in structure.•The long middle loop suppresses activity of GnT-III.•The long middle loop is important for shedding of GnT-III.•The C-terminal tail is essential for proper folding of GnT-III. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0304-4165 1872-8006 1872-8006 |
DOI: | 10.1016/j.bbagen.2024.130734 |