Structure of the macronuclear polyubiquitin gene in Euplotes

The hypotrichous ciliate, Euplotes eurystomus, contains both a transcriptionally inactive micronucleus (MIC) and a transcriptionally active macronucleus (MAC) in the same cell. MAC DNA is small (0.5-20 kb), linear and highly amplified. Each DNA fragment consists of two telomeres, a single coding reg...

Full description

Saved in:
Bibliographic Details
Published inChromosoma Vol. 100; no. 6; p. 386
Main Authors Hauser, L J, Roberson, A E, Olins, D E
Format Journal Article
LanguageEnglish
Published Austria 01.07.1991
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:The hypotrichous ciliate, Euplotes eurystomus, contains both a transcriptionally inactive micronucleus (MIC) and a transcriptionally active macronucleus (MAC) in the same cell. MAC DNA is small (0.5-20 kb), linear and highly amplified. Each DNA fragment consists of two telomeres, a single coding region, and the necessary control elements to regulate gene transcription and replication. The polyubiquitin gene consists of 898 bp, plus 28 bp of double-stranded and 14 bases of single-stranded DNA of the telomeric repeat G4T4 at each end. The coding region exists as three copies of the ubiquitin gene (690 bp) fused in a head-to-tail arrangement as in other organisms. The stop codon is TAA, as in other Euplotes genes, and is not the rare glutamine codon used in most other ciliates. The 3' nontranslated region contains two presumptive poly(A) addition sites; the 5' nontranslated region possesses two putative TATA boxes, several imperfect direct and inverted repeats, and a possible origin of replication. Nucleosome positioning studies reveal four tightly packed nucleosomes and a non-nucleosomal area containing the probable 5' control region as well as part of the coding region. The 5' area does not contain any DNAse I hypersensitive sites. Although the telomeres are protected from exonuclease digestion, they are not as well protected as Oxytricha telomeres against endonucleases and cleavage by methidium propyl Fe2+ EDTA.
ISSN:0009-5915
DOI:10.1007/BF00337517