Distributed nonconvex optimization subject to globally coupled constraints via collaborative neurodynamic optimization
In this paper, a recurrent neural network is proposed for distributed nonconvex optimization subject to globally coupled (in)equality constraints and local bound constraints. Two distributed optimization models, including a resource allocation problem and a consensus-constrained optimization problem...
Saved in:
Published in | Neural networks Vol. 184; p. 107027 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, a recurrent neural network is proposed for distributed nonconvex optimization subject to globally coupled (in)equality constraints and local bound constraints. Two distributed optimization models, including a resource allocation problem and a consensus-constrained optimization problem, are established, where the objective functions are not necessarily convex, or the constraints do not guarantee a convex feasible set. To handle the nonconvexity, an augmented Lagrangian function is designed, based on which a recurrent neural network is developed for solving the optimization models in a distributed manner, and the convergence to a local optimal solution is proven. For the search of global optimal solutions, a collaborative neurodynamic optimization method is established by utilizing multiple proposed recurrent neural networks and a meta-heuristic rule. A numerical example, a simulation involving an electricity market, and a distributed cooperative control problem are provided to verify and demonstrate the characteristics of the main results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0893-6080 1879-2782 1879-2782 |
DOI: | 10.1016/j.neunet.2024.107027 |