Observations of Stably Stratified Flow through a Microscale Gap

This paper reports the findings of a comprehensive field investigation on flow through a mountain gap subject to a range of stably stratified environmental conditions. This study was embedded within the Perdigão field campaign, which was conducted in a region of parallel double-ridge topography with...

Full description

Saved in:
Bibliographic Details
Published inJournal of the atmospheric sciences Vol. 78; no. 1; pp. 189 - 208
Main Authors Vassallo, Daniel, Krishnamurthy, Raghavendra, Menke, Robert, Fernando, Harindra J. S.
Format Journal Article
LanguageEnglish
Published Boston American Meteorological Society 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper reports the findings of a comprehensive field investigation on flow through a mountain gap subject to a range of stably stratified environmental conditions. This study was embedded within the Perdigão field campaign, which was conducted in a region of parallel double-ridge topography with ridge-normal wind climatology. One of the ridges has a well-defined gap (col) at the top, and an array of in situ and remote sensors, including a novel triple Doppler lidar system, was deployed around it. The experimental design was mostly guided by previous numerical and theoretical studies conducted with an idealized configuration where a flow (with characteristic velocity U 0 and buoyancy frequency N ) approaches normal to a mountain of height h with a gap at its crest, for which the governing parameters are the dimensionless mountain height G = Nh / U 0 and various gap aspect ratios. Modified forms of G were proposed to account for real-world atmospheric variability, and the results are discussed in terms of a gap-averaged value G c . The nature of gap flow was highly dependent on G c , wherein a nearly neutral flow regime ( G c < 1), a transitional mountain wave regime [ G c ~ O (1)], and a gap-jetting regime [ G c > O (1)] were identified. The measurements were in broad agreement with previous numerical and theoretical studies on a single ridge with a gap or double-ridge topography, although details vary. This is the first-ever detailed field study reported on microscale [ O (100) m] gap flows, and it provides useful data and insights for future theoretical and numerical studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-4928
1520-0469
DOI:10.1175/JAS-D-20-0087.1