The Influence of Electrophoretic Deposition Parameters and Heat Treatment on the Microstructure and Tribological Properties of Nanocomposite Si3N4/PEEK 708 Coatings on Titanium Alloy

Nanocomposite Si3N4/PEEK 708 coatings were successfully fabricated on the Ti-6Al-4V alloy substrate by electrophoretic deposition (EPD) and post-EPD heat treatment. The addition of chitosan polyelectrolyte into ethanolic-based suspensions enabled the cathodic co-deposition of ceramic and polymeric p...

Full description

Saved in:
Bibliographic Details
Published inCoatings (Basel) Vol. 9; no. 9; p. 530
Main Authors Fiołek, Aleksandra, Zimowski, Sławomir, Kopia, Agnieszka, Moskalewicz, Tomasz
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nanocomposite Si3N4/PEEK 708 coatings were successfully fabricated on the Ti-6Al-4V alloy substrate by electrophoretic deposition (EPD) and post-EPD heat treatment. The addition of chitosan polyelectrolyte into ethanolic-based suspensions enabled the cathodic co-deposition of ceramic and polymeric particles. Zeta potential measurements allowed the elaboration of stable suspensions. The selection of the optimal EPD voltage and time enabled uniform coatings to be obtained. Heating above the PEEK melting point and cooling with a furnace or in water resulted in the formation of dense coatings with semi-crystalline or amorphous polymer structures, respectively. Both coatings with a thickness in the range of 90–105 µm had good adhesion and scratch resistance to the substrates, despite the presence of relatively high degrees of open porosity. The coatings improved the tribological properties of the titanium alloy. However, a strong relationship between the polymeric matrix structure and wear resistance was observed. Semi-crystalline coatings proved to be significantly more wear resistant than amorphous ones.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings9090530