Quasinormed spaces generated by a quasimodular

In this paper, we introduce the notion of a quasimodular and we prove that the respective Minkowski functional of the unit quasimodular ball becomes a quasinorm. In this way, we refer to and complete the well-known theory related to the notions of a modular and a convex modular that lead to the F -n...

Full description

Saved in:
Bibliographic Details
Published inJournal of inequalities and applications Vol. 2024; no. 1; pp. 86 - 18
Main Authors Foralewski, Paweł, Hudzik, Henryk, Kolwicz, Paweł
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 28.06.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we introduce the notion of a quasimodular and we prove that the respective Minkowski functional of the unit quasimodular ball becomes a quasinorm. In this way, we refer to and complete the well-known theory related to the notions of a modular and a convex modular that lead to the F -norm and to the norm, respectively. We use the obtained results to consider the basic properties of quasinormed Calderón–Lozanovskiĭ spaces E φ , where the lower Matuszewska–Orlicz index α φ plays the key role. Our studies are conducted in a full possible generality.
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-024-03162-w