Absolutely monotonic functions involving the zero-balanced Gaussian hypergeometric functions with applications
Let F ( a , b ; a + b ; x ) be the Gaussian hypergeometric function and F p ( x ) = ( 1 − x ) p exp ( F ( a , b ; a + b ; x ) ) . This article aims to extend the work of Zhen-Hang Yang and Jing-Feng Tian to a more generalized case involving zero-balanced Gaussian hypergeometric functions. We prove t...
Saved in:
Published in | Journal of inequalities and applications Vol. 2025; no. 1; pp. 25 - 15 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
27.02.2025
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let
F
(
a
,
b
;
a
+
b
;
x
)
be the Gaussian hypergeometric function and
F
p
(
x
)
=
(
1
−
x
)
p
exp
(
F
(
a
,
b
;
a
+
b
;
x
)
)
. This article aims to extend the work of Zhen-Hang Yang and Jing-Feng Tian to a more generalized case involving zero-balanced Gaussian hypergeometric functions. We prove the sufficient and necessary conditions for the absolute monotonicity of
−
(
ln
F
p
)
′
,
ln
F
p
,
−
(
F
p
)
′
and
F
p
. These results ultimately yield several new inequalities involving the zero-balanced Gaussian hypergeometric functions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1029-242X 1025-5834 1029-242X |
DOI: | 10.1186/s13660-025-03275-w |