Impacts of Convective Activity over the Tibetan Plateau on Plateau Vortex, Southwest Vortex, and Downstream Precipitation

In summer, convective activity over the Tibetan Plateau (TP) is vigorous, with some of it moving eastward and vacating the plateau [defined as the eastward-moving type (EMT)]. Although the EMT only accounts for a small proportion, it is closely related to heavy precipitation east of the TP. This stu...

Full description

Saved in:
Bibliographic Details
Published inJournal of the atmospheric sciences Vol. 76; no. 12; pp. 3803 - 3830
Main Authors Fu, Shen-Ming, Mai, Zi, Sun, Jian-Hua, Li, Wan-Li, Ding, Yang, Wang, Ya-Qiang
Format Journal Article
LanguageEnglish
Published Boston American Meteorological Society 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In summer, convective activity over the Tibetan Plateau (TP) is vigorous, with some of it moving eastward and vacating the plateau [defined as the eastward-moving type (EMT)]. Although the EMT only accounts for a small proportion, it is closely related to heavy precipitation east of the TP. This study investigates EMT impacts based on a series of composite semi-idealized simulations and piecewise potential vorticity (PV) inversion. The main results are as follows. (i) An EMT begins to affect downstream precipitation before it vacates the TP. A weaker EMT tends to cause the main downstream rainband to reduce in intensity and move southward. (ii) The EMT contributes to the formation of an eastward-moving plateau vortex (PLV) by enhancing convergence-induced stretching. Over the TP, the PLV mainly enhances/maintains the EMT, whereas during the vacating stage, the PLV dissipates (since convergence decreases rapidly when sensible heating from the TP reduces), which substantially reduces the intensity of the EMT. (iii) After PLV dissipation, a southwest vortex (SWV) forms around the Sichuan basin mainly due to convergence-induced stretching, convection-related tilting, and background transport. Piecewise PV inversion indicates that an EMT can directly contribute to SWV formation via lowering geopotential height and enhancing cyclonic wind perturbations around the Sichuan basin (even before its vacating stage), while neither of them governs the SWV formation. Sensitivity runs show that an EMT is not necessary for SWV formation, but can modify the SWV formation time and location, as well as its displacement, which significantly affects downstream precipitation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-4928
1520-0469
DOI:10.1175/JAS-D-18-0331.1