Hypoxia-induced caspase-3 activation and DNA fragmentation in cortical neurons of newborn piglets: Role of nitric oxide

Hypoxia results in generation of nitric oxide (NO) free radicals, activation of caspase-3, and genomic DNA fragmentation. The present study tests the hypothesis that hypoxia-induced caspase-3 activation and DNA fragmentation are nitric oxide mediated. Studies were conducted in newborn piglets, divid...

Full description

Saved in:
Bibliographic Details
Published inNeurochemical research Vol. 28; no. 9; pp. 1351 - 1357
Main Authors PARIKH, N. A, KATSETOS, C. D, ASHRAF, Q. M, HAIDER, S. H, LEGIDO, A, DELIVORIA-PAPADOPOULOS, M, MISHRA, O. P
Format Journal Article
LanguageEnglish
Published New York, NY Springer 01.09.2003
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hypoxia results in generation of nitric oxide (NO) free radicals, activation of caspase-3, and genomic DNA fragmentation. The present study tests the hypothesis that hypoxia-induced caspase-3 activation and DNA fragmentation are nitric oxide mediated. Studies were conducted in newborn piglets, divided into normoxic (n = 5), hypoxic (n = 5), and hypoxic-7-NINA (n = 6). Hypoxic-7-NINA group received the neuronal nitric oxide synthase inhibitor, 7-Nitroindazole (7-NINA). Caspase-3 activity was determined spectrofluorometrically using enzyme-specific substrates. Sections from the neocortex were stained with an antiserum recognizing active caspase-3. Purified DNA was separated by gel electrophoresis. Administration of 7-NINA resulted in decreased immunoreactivity of caspase-3 (mean LI: 20.2%) as compared to the untreated hypoxia group (mean LI: 57.5%) (P < 0.05). 7-NINA attenuated caspase-3 enzymatic activity as well in comparison to the untreated hypoxia group (P < 0.05). Furthermore, multiple low molecular weight bands corresponding to DNA fragments were present in the hypoxic but not in the normoxic or hypoxic-7-NINA groups. Inhibition of nNOS abates the hypoxia-induced increase in active caspase-3 immunoreactivity, as well as enzymatic activity in cortical neurons, and DNA fragmentation in brain homogenates. We conclude that the coordinate increase of capase-3 activity and fragmentation of nuclear DNA in the hypoxic newborn piglet brain are NO mediated.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0364-3190
1573-6903
DOI:10.1023/A:1024992214886