Greenhouse gas emission savings of ground source heat pump systems in Europe: A review

An overview is presented on the last decade of geothermal heating by ground source heat pumps (GSHPs) in Europe. Significant growth rates can be observed and today's total number of GSHP systems is above 1 million, with an estimate of about 1.25 million mainly used for residential space heating...

Full description

Saved in:
Bibliographic Details
Published inRenewable & sustainable energy reviews Vol. 16; no. 2; pp. 1256 - 1267
Main Authors BAYER, Peter, SANER, Dominik, BOLAY, Stephan, RYBACH, Ladislaus, BLUM, Philipp
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier 01.02.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An overview is presented on the last decade of geothermal heating by ground source heat pumps (GSHPs) in Europe. Significant growth rates can be observed and today's total number of GSHP systems is above 1 million, with an estimate of about 1.25 million mainly used for residential space heating in 2011. These systems are counted among renewable energy technologies, though heat pump operation typically consumes electricity and thus only a fraction of the energy produced is actually greenhouse gas (GHG) emission free. Consequently, only in the most mature markets of the Scandinavian countries and in Switzerland, calculated emission savings reach more than 1% compared to standard heatings. However, Sweden shows that more than 35% is possible, with about one third of these systems in Europe concentrated in this country. Our calculations demonstrate the crucial role of country-specific heating practices, substituted heat mix and primary electricity mix for country-specific emission savings. For the nineteen European countries studied in 2008, 3.7 Mio t CO2 (eq.) are saved in comparison to conventional practice, which means about 0.74% on average. This reveals that many countries are at an early stage with great potential for the future, but even if the markets would be fully saturated, this average would barely climb to about 30%. These numbers, however, take the current conditions as reference, and when extrapolated to the future can be expected to improve by greener electricity production and increased heat pump performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1364-0321
1879-0690
DOI:10.1016/j.rser.2011.09.027