Taylor-Couette flow control by amplitude variation of the inner cylinder cross-section oscillation
The hydrodynamic stability of a viscous fluid flow evolving in an annular space between a rotating inner cylinder with a periodically variable radius and an outer fixed cylinder is considered. The basic flow is axis-symmetric with two counter-rotating vortices each wavelength along the whole filled...
Saved in:
Published in | European physical journal. Applied physics Vol. 71; no. 1; p. 11102 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Les Ulis
EDP Sciences
01.07.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The hydrodynamic stability of a viscous fluid flow evolving in an annular space between a rotating inner cylinder with a periodically variable radius and an outer fixed cylinder is considered. The basic flow is axis-symmetric with two counter-rotating vortices each wavelength along the whole filled system length. The numerical simulations are implemented on the commercial Fluent software package, a finite-volume CFD code. It is aimed to make investigation of the early flow transition with assessment of the flow response to radial pulsatile motion superimposed to the inner cylinder cross-section as an extension of a previous developed work in Oualli et al. [H. Oualli, A. Lalaoua, S. Hanchi, A. Bouabdallah, Eur. Phys. J. Appl. Phys. 61, 11102 (2013)] where a comparative controlling strategy is applied to the outer cylinder. The same basic system is considered with similar calculating parameters and procedure. In Oualli et al. [H. Oualli, A. Lalaoua, S. Hanchi, A. Bouabdallah, Eur. Phys. J. Appl. Phys. 61, 11102 (2013)], it is concluded that for the actuated outer cylinder and relatively to the non-controlled case, the critical Taylor number, Tac1, characterizing the first instability onset illustrated by the piled Taylor vortices along the gap, increases substantially to reach a growing rate of 70% when the deforming amplitude is ε = 15%. Interestingly, when this controlling strategy is applied to the inner cylinder cross-section with a slight modification of the actuating law, this tendency completely inverts and the critical Taylor number decreases sharply from Tac1 = 41.33 to Tac1 = 17.66 for ε = 5%, corresponding to a reduction rate of 57%. Fundamentally, this result is interesting and can be interpreted by prematurely triggering instabilities resulting in rapid development of flow turbulence. Practically, important applicative aspects can be met in several industry areas where substantial intensification of transport phenomena (mass, momentum and heat) is needed such as in chemical reactors, combustors, heat exchangers and cylindrical water filters. |
---|---|
Bibliography: | ark:/67375/80W-D8R7VF31-D istex:77ADA672CAE47433FFAD318B08521B93C0EACD74 publisher-ID:ap140232 PII:S1286004215502322 |
ISSN: | 1286-0042 1286-0050 |
DOI: | 10.1051/epjap/2015140232 |