Short chain fatty acids differentially modulate cellular phenotype and c-myc protein levels in primary human nonmalignant and malignant colonocytes

Short chain fatty acids may protect colonic mucosa against neoplastic transformation by modulating colonocyte phenotype, DNA synthesis, and c-myc levels. To test this hypothesis, nonmalignant and malignant human colonocytes were isolated from surgical specimens and treated with 10 mM acetate, propio...

Full description

Saved in:
Bibliographic Details
Published inDigestive diseases and sciences Vol. 46; no. 1; pp. 96 - 105
Main Authors EMENAKER, Nancy J, BASSON, Marc D
Format Journal Article
LanguageEnglish
Published Heidelberg Springer 2001
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Short chain fatty acids may protect colonic mucosa against neoplastic transformation by modulating colonocyte phenotype, DNA synthesis, and c-myc levels. To test this hypothesis, nonmalignant and malignant human colonocytes were isolated from surgical specimens and treated with 10 mM acetate, propionate, or butyrate. Markers of cellular phenotype, DNA synthesis, and c-myc protein levels were assayed by alkaline phosphatase and dipeptidyl dipeptidase IV activities, [3H]thymidine labeling, and western blotting, respectively. Butyrate, in particular, exerted discordant effects on alkaline phosphatase (P < 0.05), and c-myc levels (P < 0.05, N > or = 6) in nonmalignant and malignant human colonocytes. DPDD was unaffected by any of the short chain fatty acids tested. [3H]Thymidine labeling was differentially stimulated by short chain fatty acids in both cell types and greater DNA synthesis rates were observed in malignant colonocytes (P < 0.005, N = 16). These data suggest that in vitro, butyrate, in particular, may differentially modulate phenotype, DNA synthesis, and c-myc in nonmalignant and malignant human colonocytes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0163-2116
1573-2568
DOI:10.1023/A:1005661809250