Superhydrophobic waxy-dendron-grafted polymer films via nanostructure manipulation
To imitate the superhydrophobicity of salient epicuticular wax on lotus leaves (hereafter "Lotus effect"), waxy dendrons were synthesized and subsequently grafted on amine-containing polystyrenes. To achieve a low surface energy and a specific surface morphology, the waxy dendron design is...
Saved in:
Published in | Journal of materials chemistry Vol. 19; no. 27; pp. 4819 - 4828 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To imitate the superhydrophobicity of salient epicuticular wax on lotus leaves (hereafter "Lotus effect"), waxy dendrons were synthesized and subsequently grafted on amine-containing polystyrenes. To achieve a low surface energy and a specific surface morphology, the waxy dendron design is composed of two parts--the focal part possessing plenty of hydrogen bonding sites, and the peripheral part rich in van der Waals forces. The enhanced van der Waals force accompanied with increasing generation of dendrons helps induce self-assembly and phase separation in the preparation process of the polymer films. By different coating processes, three different films (thin film, honeycomb-like film, and three-dimensional rod-co-valley-like film) were obtained with contact angles of 95', 130', and 165', respectively. The three-dimensional rod-co-valley film samples were able to imitate the superhydrophobic property (i.e. Lotus effect), as well as utilize the built-in strong hydrogen bonds to adhere water droplets on surfaces or substrates. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0959-9428 1364-5501 |
DOI: | 10.1039/b900468h |