Applications of $ q $-difference symmetric operator in harmonic univalent functions

In this paper, for the first time, we apply symmetric $ q $ -calculus operator theory to define symmetric Salagean $ q $-differential operator. We introduce a new class $ \widetilde{\mathcal{H}}_{q}^{m}\left(\alpha \right) $ of harmonic univalent functions $ f $ associated with newly defined symmetr...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 7; no. 1; pp. 667 - 680
Main Authors Zhang, Caihuan, Khan, Shahid, Hussain, Aftab, Khan, Nazar, Hussain, Saqib, Khan, Nasir
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2022
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2022042

Cover

Abstract In this paper, for the first time, we apply symmetric $ q $ -calculus operator theory to define symmetric Salagean $ q $-differential operator. We introduce a new class $ \widetilde{\mathcal{H}}_{q}^{m}\left(\alpha \right) $ of harmonic univalent functions $ f $ associated with newly defined symmetric Salagean $ q $-differential operator for complex harmonic functions. A sufficient coefficient condition for the functions $ f $ to be sense preserving and univalent and in the same class is obtained. It is proved that this coefficient condition is necessary for the functions in its subclass $ \overline{\widetilde{\mathcal{H}}_{q}^{m}\left(\alpha \right) } $ and obtain sharp coefficient bounds, distortion theorems and covering results. Furthermore, we also highlight some known consequence of our main results.
AbstractList In this paper, for the first time, we apply symmetric $ q $ -calculus operator theory to define symmetric Salagean $ q $-differential operator. We introduce a new class $ \widetilde{\mathcal{H}}_{q}^{m}\left(\alpha \right) $ of harmonic univalent functions $ f $ associated with newly defined symmetric Salagean $ q $-differential operator for complex harmonic functions. A sufficient coefficient condition for the functions $ f $ to be sense preserving and univalent and in the same class is obtained. It is proved that this coefficient condition is necessary for the functions in its subclass $ \overline{\widetilde{\mathcal{H}}_{q}^{m}\left(\alpha \right) } $ and obtain sharp coefficient bounds, distortion theorems and covering results. Furthermore, we also highlight some known consequence of our main results.
Author Hussain, Saqib
Khan, Nasir
Zhang, Caihuan
Khan, Shahid
Khan, Nazar
Hussain, Aftab
Author_xml – sequence: 1
  givenname: Caihuan
  surname: Zhang
  fullname: Zhang, Caihuan
– sequence: 2
  givenname: Shahid
  surname: Khan
  fullname: Khan, Shahid
– sequence: 3
  givenname: Aftab
  surname: Hussain
  fullname: Hussain, Aftab
– sequence: 4
  givenname: Nazar
  surname: Khan
  fullname: Khan, Nazar
– sequence: 5
  givenname: Saqib
  surname: Hussain
  fullname: Hussain, Saqib
– sequence: 6
  givenname: Nasir
  surname: Khan
  fullname: Khan, Nasir
BookMark eNptkMtKAzEUhoNUsNbufIAsunRqJsnclqV4KRRc2H3IJCc2ZSYZM6nQt3d6QURcncPPf74D3y0aOe8AofuUzFnF-GMr43ZOCaWE0ys0prxgSV6V5ejXfoOmfb8jhNCUclrwMXpfdF1jlYzWux57g2f4E88SbY2BAE4B7g9tCzFYhX0HQUYfsHV4K0Pr3RDunf2SDbiIzd6pE-YOXRvZ9DC9zAnaPD9tlq_J-u1ltVysE8VIGROZp2CUolAUNU9ZzmppqjrThhFFKygZ0xoo01meg0opYbQ2lWJ1bjjTkLIJWp2x2sud6IJtZTgIL604BT58CBmiVQ2IwvBK0tIwXWdcmVIyArousqzOpBn-DayHM0sF3_cBzA8vJeKoVxz1ioveoU7_1JWNJ4cxSNv8f_QN1k6CJw
CitedBy_id crossref_primary_10_1155_2022_6996639
crossref_primary_10_3390_sym14091905
crossref_primary_10_1155_2023_2097976
crossref_primary_10_3390_sym14102188
crossref_primary_10_1155_2024_8279226
crossref_primary_10_3390_sym15122156
crossref_primary_10_3390_sym14040803
crossref_primary_10_3390_sym14091907
crossref_primary_10_3390_sym15061185
crossref_primary_10_3390_fractalfract7050411
crossref_primary_10_3390_sym15071407
Cites_doi 10.1088/0305-4470/22/18/004
10.1186/s13662-021-03611-6
10.4418/2013.68.2.8
10.1016/S0034-4877(09)90021-0
10.24193/subbmath.2018.4.01
10.3390/math8081334
10.3934/math.2021061
10.14492/hokmj/1562810517
10.3390/math8091470
10.3390/math9090917
10.3934/math.2020308
10.5186/aasfm.1984.0905
10.1007/s11253-019-01602-1
10.3390/sym11020292
10.1016/j.camwa.2012.01.076
10.3390/sym13040574
10.3390/sym11111368
10.1112/jlms/s2-42.2.237
10.1515/ms-2017-0271
10.1007/s40995-019-00815-0
10.3934/math.2021216
10.3390/math91518
10.3934/math.2021320
10.3390/math8050842
10.1017/S0080456800002751
10.1017/CBO9780511546600
10.2478/s12175-014-0268-9
10.1007/BFb0066543
10.1080/17476939008814407
10.3390/math7020181
10.2307/2000478
10.2298/FIL1909613S
10.1006/jmaa.1999.6377
10.1080/1065246031000074380
10.15672/hujms.576878
ContentType Journal Article
CorporateAuthor Department of Mathematics, Luoyang Normal University, Luoyang, Henan, China
Department of Mathematics, FATA University, Akhorwal (Darra Adam Khel), FR Kohat 26000 , Pakistan
Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan
Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad 22060 , Pakistan
Department of Basic Sciences, Balochistan University of Enginearing & Technology (BUET), Khuzdar 89100, Pakistan
Department of Mathematics, King Abdulaziz University, P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
CorporateAuthor_xml – name: Department of Mathematics, FATA University, Akhorwal (Darra Adam Khel), FR Kohat 26000 , Pakistan
– name: Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad 22060 , Pakistan
– name: Department of Mathematics, Luoyang Normal University, Luoyang, Henan, China
– name: Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan
– name: Department of Basic Sciences, Balochistan University of Enginearing & Technology (BUET), Khuzdar 89100, Pakistan
– name: Department of Mathematics, King Abdulaziz University, P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2022042
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 680
ExternalDocumentID oai_doaj_org_article_7f49a28f3db54cf8a30edb755b5aff30
10_3934_math_2022042
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c308t-a61efcc2e77b41363baf9b5df30c29e833dde23d566ec12032bf9c3b6f43de13
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:18:17 EDT 2025
Tue Jul 01 03:56:51 EDT 2025
Thu Apr 24 23:02:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c308t-a61efcc2e77b41363baf9b5df30c29e833dde23d566ec12032bf9c3b6f43de13
OpenAccessLink https://doaj.org/article/7f49a28f3db54cf8a30edb755b5aff30
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_7f49a28f3db54cf8a30edb755b5aff30
crossref_primary_10_3934_math_2022042
crossref_citationtrail_10_3934_math_2022042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2022
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2022042-28
key-10.3934/math.2022042-29
key-10.3934/math.2022042-26
key-10.3934/math.2022042-27
key-10.3934/math.2022042-31
key-10.3934/math.2022042-10
key-10.3934/math.2022042-32
key-10.3934/math.2022042-30
key-10.3934/math.2022042-13
key-10.3934/math.2022042-35
key-10.3934/math.2022042-14
key-10.3934/math.2022042-36
key-10.3934/math.2022042-11
key-10.3934/math.2022042-33
key-10.3934/math.2022042-12
key-10.3934/math.2022042-34
key-10.3934/math.2022042-17
key-10.3934/math.2022042-39
key-10.3934/math.2022042-18
key-10.3934/math.2022042-15
key-10.3934/math.2022042-37
key-10.3934/math.2022042-16
key-10.3934/math.2022042-38
key-10.3934/math.2022042-19
key-10.3934/math.2022042-8
key-10.3934/math.2022042-9
key-10.3934/math.2022042-4
key-10.3934/math.2022042-5
key-10.3934/math.2022042-6
key-10.3934/math.2022042-7
key-10.3934/math.2022042-20
key-10.3934/math.2022042-1
key-10.3934/math.2022042-21
key-10.3934/math.2022042-2
key-10.3934/math.2022042-3
key-10.3934/math.2022042-24
key-10.3934/math.2022042-25
key-10.3934/math.2022042-22
key-10.3934/math.2022042-23
References_xml – ident: key-10.3934/math.2022042-1
  doi: 10.1088/0305-4470/22/18/004
– ident: key-10.3934/math.2022042-9
– ident: key-10.3934/math.2022042-16
  doi: 10.1186/s13662-021-03611-6
– ident: key-10.3934/math.2022042-12
  doi: 10.4418/2013.68.2.8
– ident: key-10.3934/math.2022042-24
  doi: 10.1016/S0034-4877(09)90021-0
– ident: key-10.3934/math.2022042-31
  doi: 10.24193/subbmath.2018.4.01
– ident: key-10.3934/math.2022042-17
  doi: 10.3390/math8081334
– ident: key-10.3934/math.2022042-11
– ident: key-10.3934/math.2022042-18
  doi: 10.3934/math.2021061
– ident: key-10.3934/math.2022042-33
  doi: 10.14492/hokmj/1562810517
– ident: key-10.3934/math.2022042-15
  doi: 10.3390/math8091470
– ident: key-10.3934/math.2022042-21
  doi: 10.3390/math9090917
– ident: key-10.3934/math.2022042-39
  doi: 10.3934/math.2020308
– ident: key-10.3934/math.2022042-2
  doi: 10.5186/aasfm.1984.0905
– ident: key-10.3934/math.2022042-13
  doi: 10.1007/s11253-019-01602-1
– ident: key-10.3934/math.2022042-35
  doi: 10.3390/sym11020292
– ident: key-10.3934/math.2022042-28
– ident: key-10.3934/math.2022042-3
  doi: 10.1016/j.camwa.2012.01.076
– ident: key-10.3934/math.2022042-19
  doi: 10.3390/sym13040574
– ident: key-10.3934/math.2022042-23
  doi: 10.3390/sym11111368
– ident: key-10.3934/math.2022042-27
  doi: 10.1112/jlms/s2-42.2.237
– ident: key-10.3934/math.2022042-22
  doi: 10.1515/ms-2017-0271
– ident: key-10.3934/math.2022042-29
  doi: 10.1007/s40995-019-00815-0
– ident: key-10.3934/math.2022042-20
  doi: 10.3934/math.2021216
– ident: key-10.3934/math.2022042-34
  doi: 10.3390/math91518
– ident: key-10.3934/math.2022042-37
  doi: 10.3934/math.2021320
– ident: key-10.3934/math.2022042-32
  doi: 10.3390/math8050842
– ident: key-10.3934/math.2022042-7
  doi: 10.1017/S0080456800002751
– ident: key-10.3934/math.2022042-4
  doi: 10.1017/CBO9780511546600
– ident: key-10.3934/math.2022042-14
  doi: 10.2478/s12175-014-0268-9
– ident: key-10.3934/math.2022042-26
  doi: 10.1007/BFb0066543
– ident: key-10.3934/math.2022042-6
  doi: 10.1080/17476939008814407
– ident: key-10.3934/math.2022042-25
– ident: key-10.3934/math.2022042-30
  doi: 10.3390/math7020181
– ident: key-10.3934/math.2022042-5
  doi: 10.2307/2000478
– ident: key-10.3934/math.2022042-36
  doi: 10.2298/FIL1909613S
– ident: key-10.3934/math.2022042-8
  doi: 10.1006/jmaa.1999.6377
– ident: key-10.3934/math.2022042-10
  doi: 10.1080/1065246031000074380
– ident: key-10.3934/math.2022042-38
  doi: 10.15672/hujms.576878
SSID ssj0002124274
Score 2.2646787
Snippet In this paper, for the first time, we apply symmetric $ q $ -calculus operator theory to define symmetric Salagean $ q $-differential operator. We introduce a...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 667
SubjectTerms harmonic functions
symmetric q-derivative operator
symmetric salagean q-differential operator
univalent functions
Title Applications of $ q $-difference symmetric operator in harmonic univalent functions
URI https://doaj.org/article/7f49a28f3db54cf8a30edb755b5aff30
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ9YXe9CThCY7u0n2WMVShOqlQm8h-4KCTattD_57Z5K01IN48RqGZTOzzDezs3wfY7fWhcSkxNxqNUSyzOKoTLIQ5T5WTloErfpCf_iSDt7k81iNt6S-6E1YQw_cOK6bBalLkQdwRkkb8hJi70ymlFFlCFB367GOt5opysGYkCX2W81Ld9Agu1j_0exBiFiKHxi0RdVfY0r_kB20xSDvNZs4Yju-Omb7ww2T6uKEvfa2Jsx8FvhHtNY0sZ4vvqZTksSyfDb39cCcTypObNTEeMtX1QQPEsIKJ_iqlzhlo_7T6HEQtSIIkYU4X0ZlmvhgrfBZZhBwUjBl0EY5_HUrtM8BMEEJcFiWeZuQHroJ2oJJgwTnEzhju9Ws8ueM6xQD4xILqcqkxFUEVtc5Jt6gvDS56rD7tVcK2xKEk07Fe4GNAvmwIB8WrQ877G5jPW-IMX6xeyAHb2yIzrr-gEEu2iAXfwX54j8WuWR7tKfm_uSK7S4_V_4aK4qluakPzzeEFs1w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+%24+q+%24-difference+symmetric+operator+in+harmonic+univalent+functions&rft.jtitle=AIMS+mathematics&rft.au=Zhang%2C+Caihuan&rft.au=Khan%2C+Shahid&rft.au=Hussain%2C+Aftab&rft.au=Khan%2C+Nazar&rft.date=2022-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=7&rft.issue=1&rft.spage=667&rft.epage=680&rft_id=info:doi/10.3934%2Fmath.2022042&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2022042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon