Applications of $ q $-difference symmetric operator in harmonic univalent functions
In this paper, for the first time, we apply symmetric $ q $ -calculus operator theory to define symmetric Salagean $ q $-differential operator. We introduce a new class $ \widetilde{\mathcal{H}}_{q}^{m}\left(\alpha \right) $ of harmonic univalent functions $ f $ associated with newly defined symmetr...
Saved in:
Published in | AIMS mathematics Vol. 7; no. 1; pp. 667 - 680 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2022042 |
Cover
Abstract | In this paper, for the first time, we apply symmetric $ q $ -calculus operator theory to define symmetric Salagean $ q $-differential operator. We introduce a new class $ \widetilde{\mathcal{H}}_{q}^{m}\left(\alpha \right) $ of harmonic univalent functions $ f $ associated with newly defined symmetric Salagean $ q $-differential operator for complex harmonic functions. A sufficient coefficient condition for the functions $ f $ to be sense preserving and univalent and in the same class is obtained. It is proved that this coefficient condition is necessary for the functions in its subclass $ \overline{\widetilde{\mathcal{H}}_{q}^{m}\left(\alpha \right) } $ and obtain sharp coefficient bounds, distortion theorems and covering results. Furthermore, we also highlight some known consequence of our main results. |
---|---|
AbstractList | In this paper, for the first time, we apply symmetric $ q $ -calculus operator theory to define symmetric Salagean $ q $-differential operator. We introduce a new class $ \widetilde{\mathcal{H}}_{q}^{m}\left(\alpha \right) $ of harmonic univalent functions $ f $ associated with newly defined symmetric Salagean $ q $-differential operator for complex harmonic functions. A sufficient coefficient condition for the functions $ f $ to be sense preserving and univalent and in the same class is obtained. It is proved that this coefficient condition is necessary for the functions in its subclass $ \overline{\widetilde{\mathcal{H}}_{q}^{m}\left(\alpha \right) } $ and obtain sharp coefficient bounds, distortion theorems and covering results. Furthermore, we also highlight some known consequence of our main results. |
Author | Hussain, Saqib Khan, Nasir Zhang, Caihuan Khan, Shahid Khan, Nazar Hussain, Aftab |
Author_xml | – sequence: 1 givenname: Caihuan surname: Zhang fullname: Zhang, Caihuan – sequence: 2 givenname: Shahid surname: Khan fullname: Khan, Shahid – sequence: 3 givenname: Aftab surname: Hussain fullname: Hussain, Aftab – sequence: 4 givenname: Nazar surname: Khan fullname: Khan, Nazar – sequence: 5 givenname: Saqib surname: Hussain fullname: Hussain, Saqib – sequence: 6 givenname: Nasir surname: Khan fullname: Khan, Nasir |
BookMark | eNptkMtKAzEUhoNUsNbufIAsunRqJsnclqV4KRRc2H3IJCc2ZSYZM6nQt3d6QURcncPPf74D3y0aOe8AofuUzFnF-GMr43ZOCaWE0ys0prxgSV6V5ejXfoOmfb8jhNCUclrwMXpfdF1jlYzWux57g2f4E88SbY2BAE4B7g9tCzFYhX0HQUYfsHV4K0Pr3RDunf2SDbiIzd6pE-YOXRvZ9DC9zAnaPD9tlq_J-u1ltVysE8VIGROZp2CUolAUNU9ZzmppqjrThhFFKygZ0xoo01meg0opYbQ2lWJ1bjjTkLIJWp2x2sud6IJtZTgIL604BT58CBmiVQ2IwvBK0tIwXWdcmVIyArousqzOpBn-DayHM0sF3_cBzA8vJeKoVxz1ioveoU7_1JWNJ4cxSNv8f_QN1k6CJw |
CitedBy_id | crossref_primary_10_1155_2022_6996639 crossref_primary_10_3390_sym14091905 crossref_primary_10_1155_2023_2097976 crossref_primary_10_3390_sym14102188 crossref_primary_10_1155_2024_8279226 crossref_primary_10_3390_sym15122156 crossref_primary_10_3390_sym14040803 crossref_primary_10_3390_sym14091907 crossref_primary_10_3390_sym15061185 crossref_primary_10_3390_fractalfract7050411 crossref_primary_10_3390_sym15071407 |
Cites_doi | 10.1088/0305-4470/22/18/004 10.1186/s13662-021-03611-6 10.4418/2013.68.2.8 10.1016/S0034-4877(09)90021-0 10.24193/subbmath.2018.4.01 10.3390/math8081334 10.3934/math.2021061 10.14492/hokmj/1562810517 10.3390/math8091470 10.3390/math9090917 10.3934/math.2020308 10.5186/aasfm.1984.0905 10.1007/s11253-019-01602-1 10.3390/sym11020292 10.1016/j.camwa.2012.01.076 10.3390/sym13040574 10.3390/sym11111368 10.1112/jlms/s2-42.2.237 10.1515/ms-2017-0271 10.1007/s40995-019-00815-0 10.3934/math.2021216 10.3390/math91518 10.3934/math.2021320 10.3390/math8050842 10.1017/S0080456800002751 10.1017/CBO9780511546600 10.2478/s12175-014-0268-9 10.1007/BFb0066543 10.1080/17476939008814407 10.3390/math7020181 10.2307/2000478 10.2298/FIL1909613S 10.1006/jmaa.1999.6377 10.1080/1065246031000074380 10.15672/hujms.576878 |
ContentType | Journal Article |
CorporateAuthor | Department of Mathematics, Luoyang Normal University, Luoyang, Henan, China Department of Mathematics, FATA University, Akhorwal (Darra Adam Khel), FR Kohat 26000 , Pakistan Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad 22060 , Pakistan Department of Basic Sciences, Balochistan University of Enginearing & Technology (BUET), Khuzdar 89100, Pakistan Department of Mathematics, King Abdulaziz University, P.O. Box 80203 , Jeddah 21589 , Saudi Arabia |
CorporateAuthor_xml | – name: Department of Mathematics, FATA University, Akhorwal (Darra Adam Khel), FR Kohat 26000 , Pakistan – name: Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad 22060 , Pakistan – name: Department of Mathematics, Luoyang Normal University, Luoyang, Henan, China – name: Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan – name: Department of Basic Sciences, Balochistan University of Enginearing & Technology (BUET), Khuzdar 89100, Pakistan – name: Department of Mathematics, King Abdulaziz University, P.O. Box 80203 , Jeddah 21589 , Saudi Arabia |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2022042 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 680 |
ExternalDocumentID | oai_doaj_org_article_7f49a28f3db54cf8a30edb755b5aff30 10_3934_math_2022042 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c308t-a61efcc2e77b41363baf9b5df30c29e833dde23d566ec12032bf9c3b6f43de13 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:18:17 EDT 2025 Tue Jul 01 03:56:51 EDT 2025 Thu Apr 24 23:02:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c308t-a61efcc2e77b41363baf9b5df30c29e833dde23d566ec12032bf9c3b6f43de13 |
OpenAccessLink | https://doaj.org/article/7f49a28f3db54cf8a30edb755b5aff30 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7f49a28f3db54cf8a30edb755b5aff30 crossref_primary_10_3934_math_2022042 crossref_citationtrail_10_3934_math_2022042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2022 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2022042-28 key-10.3934/math.2022042-29 key-10.3934/math.2022042-26 key-10.3934/math.2022042-27 key-10.3934/math.2022042-31 key-10.3934/math.2022042-10 key-10.3934/math.2022042-32 key-10.3934/math.2022042-30 key-10.3934/math.2022042-13 key-10.3934/math.2022042-35 key-10.3934/math.2022042-14 key-10.3934/math.2022042-36 key-10.3934/math.2022042-11 key-10.3934/math.2022042-33 key-10.3934/math.2022042-12 key-10.3934/math.2022042-34 key-10.3934/math.2022042-17 key-10.3934/math.2022042-39 key-10.3934/math.2022042-18 key-10.3934/math.2022042-15 key-10.3934/math.2022042-37 key-10.3934/math.2022042-16 key-10.3934/math.2022042-38 key-10.3934/math.2022042-19 key-10.3934/math.2022042-8 key-10.3934/math.2022042-9 key-10.3934/math.2022042-4 key-10.3934/math.2022042-5 key-10.3934/math.2022042-6 key-10.3934/math.2022042-7 key-10.3934/math.2022042-20 key-10.3934/math.2022042-1 key-10.3934/math.2022042-21 key-10.3934/math.2022042-2 key-10.3934/math.2022042-3 key-10.3934/math.2022042-24 key-10.3934/math.2022042-25 key-10.3934/math.2022042-22 key-10.3934/math.2022042-23 |
References_xml | – ident: key-10.3934/math.2022042-1 doi: 10.1088/0305-4470/22/18/004 – ident: key-10.3934/math.2022042-9 – ident: key-10.3934/math.2022042-16 doi: 10.1186/s13662-021-03611-6 – ident: key-10.3934/math.2022042-12 doi: 10.4418/2013.68.2.8 – ident: key-10.3934/math.2022042-24 doi: 10.1016/S0034-4877(09)90021-0 – ident: key-10.3934/math.2022042-31 doi: 10.24193/subbmath.2018.4.01 – ident: key-10.3934/math.2022042-17 doi: 10.3390/math8081334 – ident: key-10.3934/math.2022042-11 – ident: key-10.3934/math.2022042-18 doi: 10.3934/math.2021061 – ident: key-10.3934/math.2022042-33 doi: 10.14492/hokmj/1562810517 – ident: key-10.3934/math.2022042-15 doi: 10.3390/math8091470 – ident: key-10.3934/math.2022042-21 doi: 10.3390/math9090917 – ident: key-10.3934/math.2022042-39 doi: 10.3934/math.2020308 – ident: key-10.3934/math.2022042-2 doi: 10.5186/aasfm.1984.0905 – ident: key-10.3934/math.2022042-13 doi: 10.1007/s11253-019-01602-1 – ident: key-10.3934/math.2022042-35 doi: 10.3390/sym11020292 – ident: key-10.3934/math.2022042-28 – ident: key-10.3934/math.2022042-3 doi: 10.1016/j.camwa.2012.01.076 – ident: key-10.3934/math.2022042-19 doi: 10.3390/sym13040574 – ident: key-10.3934/math.2022042-23 doi: 10.3390/sym11111368 – ident: key-10.3934/math.2022042-27 doi: 10.1112/jlms/s2-42.2.237 – ident: key-10.3934/math.2022042-22 doi: 10.1515/ms-2017-0271 – ident: key-10.3934/math.2022042-29 doi: 10.1007/s40995-019-00815-0 – ident: key-10.3934/math.2022042-20 doi: 10.3934/math.2021216 – ident: key-10.3934/math.2022042-34 doi: 10.3390/math91518 – ident: key-10.3934/math.2022042-37 doi: 10.3934/math.2021320 – ident: key-10.3934/math.2022042-32 doi: 10.3390/math8050842 – ident: key-10.3934/math.2022042-7 doi: 10.1017/S0080456800002751 – ident: key-10.3934/math.2022042-4 doi: 10.1017/CBO9780511546600 – ident: key-10.3934/math.2022042-14 doi: 10.2478/s12175-014-0268-9 – ident: key-10.3934/math.2022042-26 doi: 10.1007/BFb0066543 – ident: key-10.3934/math.2022042-6 doi: 10.1080/17476939008814407 – ident: key-10.3934/math.2022042-25 – ident: key-10.3934/math.2022042-30 doi: 10.3390/math7020181 – ident: key-10.3934/math.2022042-5 doi: 10.2307/2000478 – ident: key-10.3934/math.2022042-36 doi: 10.2298/FIL1909613S – ident: key-10.3934/math.2022042-8 doi: 10.1006/jmaa.1999.6377 – ident: key-10.3934/math.2022042-10 doi: 10.1080/1065246031000074380 – ident: key-10.3934/math.2022042-38 doi: 10.15672/hujms.576878 |
SSID | ssj0002124274 |
Score | 2.2646787 |
Snippet | In this paper, for the first time, we apply symmetric $ q $ -calculus operator theory to define symmetric Salagean $ q $-differential operator. We introduce a... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 667 |
SubjectTerms | harmonic functions symmetric q-derivative operator symmetric salagean q-differential operator univalent functions |
Title | Applications of $ q $-difference symmetric operator in harmonic univalent functions |
URI | https://doaj.org/article/7f49a28f3db54cf8a30edb755b5aff30 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ9YXe9CThCY7u0n2WMVShOqlQm8h-4KCTattD_57Z5K01IN48RqGZTOzzDezs3wfY7fWhcSkxNxqNUSyzOKoTLIQ5T5WTloErfpCf_iSDt7k81iNt6S-6E1YQw_cOK6bBalLkQdwRkkb8hJi70ymlFFlCFB367GOt5opysGYkCX2W81Ld9Agu1j_0exBiFiKHxi0RdVfY0r_kB20xSDvNZs4Yju-Omb7ww2T6uKEvfa2Jsx8FvhHtNY0sZ4vvqZTksSyfDb39cCcTypObNTEeMtX1QQPEsIKJ_iqlzhlo_7T6HEQtSIIkYU4X0ZlmvhgrfBZZhBwUjBl0EY5_HUrtM8BMEEJcFiWeZuQHroJ2oJJgwTnEzhju9Ws8ueM6xQD4xILqcqkxFUEVtc5Jt6gvDS56rD7tVcK2xKEk07Fe4GNAvmwIB8WrQ877G5jPW-IMX6xeyAHb2yIzrr-gEEu2iAXfwX54j8WuWR7tKfm_uSK7S4_V_4aK4qluakPzzeEFs1w |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+%24+q+%24-difference+symmetric+operator+in+harmonic+univalent+functions&rft.jtitle=AIMS+mathematics&rft.au=Zhang%2C+Caihuan&rft.au=Khan%2C+Shahid&rft.au=Hussain%2C+Aftab&rft.au=Khan%2C+Nazar&rft.date=2022-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=7&rft.issue=1&rft.spage=667&rft.epage=680&rft_id=info:doi/10.3934%2Fmath.2022042&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2022042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |