Applications of $ q $-difference symmetric operator in harmonic univalent functions
In this paper, for the first time, we apply symmetric $ q $ -calculus operator theory to define symmetric Salagean $ q $-differential operator. We introduce a new class $ \widetilde{\mathcal{H}}_{q}^{m}\left(\alpha \right) $ of harmonic univalent functions $ f $ associated with newly defined symmetr...
Saved in:
Published in | AIMS mathematics Vol. 7; no. 1; pp. 667 - 680 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2022042 |
Cover
Summary: | In this paper, for the first time, we apply symmetric $ q $ -calculus operator theory to define symmetric Salagean $ q $-differential operator. We introduce a new class $ \widetilde{\mathcal{H}}_{q}^{m}\left(\alpha \right) $ of harmonic univalent functions $ f $ associated with newly defined symmetric Salagean $ q $-differential operator for complex harmonic functions. A sufficient coefficient condition for the functions $ f $ to be sense preserving and univalent and in the same class is obtained. It is proved that this coefficient condition is necessary for the functions in its subclass $ \overline{\widetilde{\mathcal{H}}_{q}^{m}\left(\alpha \right) } $ and obtain sharp coefficient bounds, distortion theorems and covering results. Furthermore, we also highlight some known consequence of our main results. |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2022042 |