Corrosion Behavior of Al-Sn-Bi Alloys in Ethylene Glycol-Water Mixtures
A study of the effect of Sn (1, 2, 3.5, 4.5, and 5 wt%) and Bi (0.5, 1.5, 3, and 4%) on the corrosion behavior of Al in ethylene glycol (C2H6O2)-40% water mixtures at 20, 40, and 60°C has been carried out using electrochemical techniques. Techniques include potentiodynamic polarization curves, elect...
Saved in:
Published in | Corrosion (Houston, Tex.) Vol. 68; no. 5; pp. 421 - 431 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Houston
NACE International
01.05.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A study of the effect of Sn (1, 2, 3.5, 4.5, and 5 wt%) and Bi (0.5, 1.5, 3, and 4%) on the corrosion behavior of Al in ethylene glycol (C2H6O2)-40% water mixtures at 20, 40, and 60°C has been carried out using electrochemical techniques. Techniques include potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), and electrochemical noise (EN) measurements. The three techniques have shown that additions of either Sn or Bi contents increased the corrosion rate of pure Al in all cases, and that generally speaking, the corrosion rate increased by increasing the temperature except for the alloy containing 1% Sn + 4% Bi, which showed the lowest corrosion rate at 60°C. This was because of a galvanic effect from the presence of Sn and/or Bi particles on the surface alloy, which acted as local cathodes, leading to an acceleration of corrosion. Nyquist diagrams showed two semicircles at 20°C and only one at 40°C or 60°C for all the alloys, showing two different corrosion-controlling mechanisms. EN measurements showed evidence of a mixture of both localized and uniform types of corrosion for all Al-based alloys. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0010-9312 1938-159X |
DOI: | 10.5006/0010-9312-68.5.421 |