High-Performance MMIC Inductors for GaN-on-Low-Resistivity Silicon for Microwave Applications

Novel MMIC spiral inductors on GaN-on-low-resistivity silicon (LR-Si) substrates (<inline-formula> <tex-math notation="LaTeX">\sigma < 40~\Omega \cdot \text {cm} </tex-math></inline-formula>) are demonstrated with enhanced self-resonance frequency (<inline-for...

Full description

Saved in:
Bibliographic Details
Published inIEEE microwave and wireless components letters Vol. 28; no. 2; pp. 99 - 101
Main Authors Eblabla, A., Li, X., Wallis, D. J., Guiney, I., Elgaid, K.
Format Journal Article
LanguageEnglish
Published IEEE 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Novel MMIC spiral inductors on GaN-on-low-resistivity silicon (LR-Si) substrates (<inline-formula> <tex-math notation="LaTeX">\sigma < 40~\Omega \cdot \text {cm} </tex-math></inline-formula>) are demonstrated with enhanced self-resonance frequency (<inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ SRF}} </tex-math></inline-formula>) and <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-factor. The developed technology improves inductor performance by suppressing substrate coupling effects using air-bridge technology above benzocyclobutene dielectric as an interface layer on the lossy substrate. A 0.83-nH spiral inductor with peak <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-factor enhancement of 57% (<inline-formula> <tex-math notation="LaTeX">Q = 22 </tex-math></inline-formula> at 24 GHz) and maximum <inline-formula> <tex-math notation="LaTeX">f_{\mathrm{ SRF}} </tex-math></inline-formula> of 59 GHz was achieved because of the extra 5-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> elevation in air. An accurate broad-band model for the fabricated inductors has been developed and verified for further performance analysis up to 40 GHz. The proposed inductors utilize cost-effective, reliable, and MMIC-compatible technology for the realization of high-performance RF GaN-on-LR Si MMIC circuits for millimeter-wave applications.
ISSN:1531-1309
1558-1764
DOI:10.1109/LMWC.2018.2790705